AMIA Jt Summits Transl Sci Proc
May 2019
Disease named entity recognition (NER) is a critical task for most biomedical natural language processing (NLP) applications. For example, extracting diseases from clinical trial text can be helpful for patient profiling and other downstream applications such as matching clinical trials to eligible patients. Similarly, disease annotation in biomedical articles can help information search engines to accurately index them such that clinicians can easily find relevant articles to enhance their knowledge.
View Article and Find Full Text PDFIn today's radiology workflow, free-text reporting is established as the most common medium to capture, store, and communicate clinical information. Radiologists routinely refer to prior radiology reports of a patient to recall critical information for new diagnosis, which is quite tedious, time consuming, and prone to human error. Automatic structuring of report content is desired to facilitate such inquiry of information.
View Article and Find Full Text PDFIntroduction: Autocompletion supports human-computer interaction in software applications that let users enter textual data. We will be inspired by the use case in which medical professionals enter ontology concepts, catering the ongoing demand for structured and standardized data in medicine.
Objectives: Goal is to give an algorithmic analysis of one particular autocompletion algorithm, called multi-prefix matching algorithm, which suggests terms whose words' prefixes contain all words in the string typed by the user, e.
In this paper, we introduce an ontology-based technology that bridges the gap between MR images on the one hand and knowledge sources on the other hand. The proposed technology allows the user to express interest in a body region by selecting this region on the MR image he or she is viewing with a mouse device. The proposed technology infers the intended body structure from the manual selection and searches the external knowledge source for pertinent information.
View Article and Find Full Text PDFIn this paper, we describe and evaluate a system that extracts clinical findings and body locations from radiology reports and correlates them. The system uses Medical Language Extraction and Encoding System (MedLEE) to map the reports' free text to structured semantic representations of their content. A lightweight reasoning engine extracts the clinical findings and body locations from MedLEE's semantic representation and correlates them.
View Article and Find Full Text PDF