This study explores the impact of a wind storm on sediment resuspension and marine biogeochemical dynamics. Additionally, the storm took place during an expedition researching bottom trawling, enabling the direct comparison of certain natural and fisheries-related disturbances. The storm was initiated by a decline in atmospheric pressure and a 2 h period of gale force winds, which was followed by over 40 h of elevated bottom currents.
View Article and Find Full Text PDFNoisy human activities at sea are changing the acoustic environment, which has been shown to affect marine mammals and fishes. Invertebrates, such as bivalves, have so far received limited attention despite their important role in the marine ecosystem. Several studies have examined the impact of sound on anti-predator behavior using simulated predators, but studies using live predators are scarce.
View Article and Find Full Text PDFClumped isotope thermometry can independently constrain the formation temperatures of carbonates, but a lack of precisely temperature-controlled calibration samples limits its application on aragonites. To address this issue, we present clumped isotope compositions of aragonitic bivalve shells grown under highly controlled temperatures (1-18°C), which we combine with clumped isotope data from natural and synthetic aragonites from a wide range of temperatures (1-850°C). We observe no discernible offset in clumped isotope values between aragonitic foraminifera, mollusks, and abiogenic aragonites or between aragonites and calcites, eliminating the need for a mineral-specific calibration or acid fractionation factor.
View Article and Find Full Text PDFThe pearl whipray (Compagno & Roberts, 1984) is a common elasmobranch in coastal western African waters. However, knowledge on their life-history and trophic ecology remains limited. Therefore, we aimed to determine the growth, maturity and diet of from the Bijagós Archipelago in Guinea-Bissau.
View Article and Find Full Text PDFBivalve shells are increasingly used as archives for high-resolution paleoclimate analyses. However, there is still an urgent need for quantitative temperature proxies that work without knowledge of the water chemistry-as is required for δ18O-based paleothermometry-and can better withstand diagenetic overprint. Recently, microstructural properties have been identified as a potential candidate fulfilling these requirements.
View Article and Find Full Text PDFRadiocarbon (C) is broadly used in oceanography to determine water ages, trace water circulation, and develop sediment- and sclerochronologies. These applications require an accurate knowledge of marine C levels, which have been largely perturbed by human activities. Globally during the last century the above-ground nuclear weapon testings have been the primary cause of the increased atmospheric and marine C.
View Article and Find Full Text PDFMarine biogenic materials such as corals, shells, or seaweed have long been recognized as recorders of environmental conditions. Here, the bivalve Cerastoderma edule is used for the first time as a recorder of past seawater contamination with anthropogenic uranium, specifically U. Several studies have employed the authorized radioactive releases, including U, from nuclear reprocessing plants in La Hague, France, into the English Channel, and Sellafield, England, into the Irish Sea, to trace Atlantic waters and to understand recent climate induced circulation changes in the Arctic Ocean.
View Article and Find Full Text PDFOxygen depletion in coastal waters may lead to release of toxic sulfide from sediments. Cable bacteria can limit sulfide release by promoting iron oxide formation in sediments. Currently, it is unknown how widespread this phenomenon is.
View Article and Find Full Text PDFOver the past century, the dendrochronology technique of crossdating has been widely used to generate a global network of tree-ring chronologies that serves as a leading indicator of environmental variability and change. Only recently, however, has this same approach been applied to growth increments in calcified structures of bivalves, fish and corals in the world's oceans. As in trees, these crossdated marine chronologies are well replicated, annually resolved and absolutely dated, providing uninterrupted multi-decadal to millennial histories of ocean palaeoclimatic and palaeoecological processes.
View Article and Find Full Text PDFLong-term and high-resolution environmental proxy data are crucial to contextualize current climate change. The extremely long-lived bivalve, Arctica islandica, is one of the most widely used paleoclimate archives of the northern Atlantic because of its fine temporal resolution. However, the interpretation of environmental histories from microstructures and elemental impurities of A.
View Article and Find Full Text PDFThe interest in Arctica islandica growth biology has recently increased due to the widespread use of its shell as a bioarchive. Although temperature and food availability are considered key factors in its growth, their combined influence has not been studied so far under laboratory conditions. We tested the interactive effect of temperature and food availability on the shell and tissue growth of A.
View Article and Find Full Text PDFis the longest-living non-colonial animal known at present. It inhabits coastal waters in the North Atlantic and its annual shell increments are widely used for paleoclimatic reconstructions. There is no consensus, however, about the intra-annual timing of its feeding activity and growth.
View Article and Find Full Text PDF