Flooding is a very costly natural hazard in the UK and is expected to increase further under future climate change scenarios. Flood defences are commonly deployed to protect communities and property from flooding, but in recent years flood management policy has looked towards solutions that seek to mitigate flood risk at flood-prone sites through targeted interventions throughout the catchment, sometimes using techniques which involve working with natural processes. This paper describes a project to provide a succinct summary of the natural science evidence base concerning the effectiveness of catchment-based 'natural' flood management in the UK.
View Article and Find Full Text PDFSci Total Environ
February 2016
This paper presents a numerical analysis of pluvial flooding to evaluate the impact of land subsidence on flood risks in urban contexts using a hydraulic model (FloodMap-HydroInundation2D). The pluvial flood event of August 2011 in Shanghai, China is used for model calibration and simulation. Evolving patterns of inundation (area and depth) are assessed over four time periods (1991, 1996, 2001 and 2011) for the downtown area, given local changes in topography and rates of land subsidence of up to 27 mm/yr.
View Article and Find Full Text PDFPhilos Trans A Math Phys Eng Sci
August 2007
Climate change impacts and adaptation assessments have traditionally adopted a scenario-based approach, which precludes an assessment of the relative risks of particular adaptation options. Probabilistic impact assessments, especially if based on a thorough analysis of the uncertainty in an impact forecast system, enable adoption of a risk-based assessment framework. However, probabilistic impacts information is conditional and will change over time.
View Article and Find Full Text PDF