Publications by authors named "Rob Wagenvoord"

Impaired coagulation factor synthesis in cirrhosis causes a reduction of most pro- and anticoagulant factors. Cirrhosis patients show no clear bleeding or thrombotic phenotype, although they are at risk for both types of hemostatic event. Thrombin generation (TG) is a global coagulation test and its outcome depends on underlying pro- and anticoagulant processes (prothrombin conversion and thrombin inactivation).

View Article and Find Full Text PDF

Cardiac surgery with cardiopulmonary bypass (CPB) is associated with blood loss and post-surgery thrombotic complications. The process of thrombin generation is disturbed during surgery with CPB because of haemodilution, coagulation factor consumption and heparin administration. We aimed to investigate the changes in thrombin generation during cardiac surgery and its underlying pro- and anticoagulant processes, and to explore the clinical consequences of these changes using in silico experimentation.

View Article and Find Full Text PDF

Thrombin generation (TG) is decreased in children. TG is determined by two underlying processes: the conversion of prothrombin to thrombin and the inactivation of thrombin. Therefore, lower TG capacity in children can either be caused by a reduction of prothrombin conversion, an increase of thrombin inactivation, or both.

View Article and Find Full Text PDF

The synthesis of a series of peptides containing C-terminal 7-amino-4-methylcoumarin (AMC) for use in the thrombin generation test (TGT) is described. The lead structure in this project was H-Gly-Gly-Arg-AMC, of which the water solubility and kinetic parameters (K(M) and k(cat)) are greatly improved over those of the substrate in current use in the TGT: Cbz-Gly-Gly-Arg-AMC. A series of N-terminally substituted Gly-Gly-Arg-AMC derivatives were synthesized, as well as implementation of structural changes at either the P(2) or P(3) position of the peptide backbone.

View Article and Find Full Text PDF

Assessing the clotting function inevitably brings about dilution of plasma. With the existing techniques of thrombin generation (TG) measurement, dilution ranges from 2:3 to 1:8. However, the possibility that dilution alters procoagulant and anticoagulant pathways differently has not been examined.

View Article and Find Full Text PDF

Question: How does the size of the heparin moiety in the anti-thrombin (AT)-heparin complex influence its anticoagulant properties?

Approach: Of 52 heparin fractions of precise Mr between 2800 and 37,000 we determined the dissociation constant (Kd) of the binding of the enzyme to the AT-heparin complex and the decay constant (kdec) of thrombin and factor Xa at 1 microM of that complex.

Results: The Kd of thrombin or factor Xa is constant when expressed in terms of the concentration of sugar units, i.e.

View Article and Find Full Text PDF

Background: In ulcerative colitis (UC), a state of hypercoagulation has frequently been observed. Low molecular weight heparin (LMWH) has shown beneficial effects as an adjuvant treatment of steroid refractory UC in open trials. We assessed potential therapeutic effects of the LMWH reviparin in hospitalised patients with mesalazine refractory UC, as well as its influence on haemostasis factors.

View Article and Find Full Text PDF

We describe the common structural basis for the anticoagulant action of the many different heparins available to the clinician. From different types of heparin we prepared fractions of virtually single molecular weight. We determined the molar concentration of material (HAM) containing the antithrombin (AT) binding pentasaccharide (A-domain), the specific catalytic activity in thrombin- and factor Xa inactivation and the capacity to inhibit thrombin generation (TG).

View Article and Find Full Text PDF

Calibrated automated thrombography displays the concentration of thrombin in clotting plasma with or without platelets (platelet-rich plasma/platelet-poor plasma, PRP/PPP) in up to 48 samples by monitoring the splitting of a fluorogenic substrate and comparing it to a constant known thrombin activity in a parallel, non-clotting sample. Thus, the non-linearity of the reaction rate with thrombin concentration is compensated for, and adding an excess of substrate can be avoided. Standard conditions were established at which acceptable experimental variation accompanies sensitivity to pathological changes.

View Article and Find Full Text PDF