pH is a "master variable" controlling many biogeochemical processes in soils. Acid sulfate soils undergo rapid and large pH changes from circumneutral pH under anaerobic soil conditions to sulfuric soils with ultra (pH < 3.5) and extremely (pH 3.
View Article and Find Full Text PDFFollowing the break of a severe drought in the Murray-Darling Basin, rising water levels restored subaqueous conditions to dried inland acid sulfate soils with sulfuric horizons (pH <3.5). Equilibrium dialysis membrane samplers were used to investigate in situ changes to soil acidity and abundance of metals and metalloids following the first 24 mo of restored subaqueous conditions.
View Article and Find Full Text PDFA severe drought from 2007 to 2010 resulted in the lowest river levels (1.75 m decline from average) in over 90 years of records at the end of the Murray-Darling Basin in South Australia. Due to the low river level and inability to apply irrigation, the groundwater depth on the adjacent agricultural flood plain also declined substantially (1-1.
View Article and Find Full Text PDFAcid sulfate soils with sulfuric material (pH<4) can have significant impacts on surface water quality and aquatic ecosystems due to low pH and high soluble metal concentrations in runoff and drainage discharges. There has been limited research on the complex geochemical transformations that occur along flow pathways from the soil acidity source to receiving waters. We studied the integrated geochemistry of metals in acid sulfate soils with sulfuric material, groundwater, drain and river water in the Lower Murray River (South Australia) over a 2 year period.
View Article and Find Full Text PDF