Publications by authors named "Rob Maher"

Article Synopsis
  • STING is a key player in sensing cytosolic nucleic acids and regulating type I interferon responses, making it a target for drug discovery due to its role in various diseases.* -
  • The study identifies a compound called AK59 that can degrade STING by utilizing the HERC4 E3 ligase, which may allow for targeting proteins traditionally considered "undruggable."* -
  • AK59 is effective against common STING mutations, indicating its potential for clinical applications and introducing HERC4 into the conversation around targeted protein degradation.*
View Article and Find Full Text PDF

Targeted protein degradation (TPD) mediates protein level through small molecule induced redirection of E3 ligases to ubiquitinate neo-substrates and mark them for proteasomal degradation. TPD has recently emerged as a key modality in drug discovery. So far only a few ligases have been utilized for TPD.

View Article and Find Full Text PDF
Article Synopsis
  • Bile acids play a crucial role in the gut by interacting with gut microbiota to regulate immune responses, although their exact physiological roles are not well understood.
  • A new study identified two bile acid metabolites, 12-oxo-lithocholic acid (BAA485) and 11-oxo-12-hydroxylithocholic acid methyl ester (BAA473), which can activate the inflammasome, promoting the secretion of interleukin-18 (IL-18) in immune cells.
  • The research suggests that these bile acid analogues may facilitate gut immune responses and could be important for understanding gut homeostasis and potential links to autoimmune diseases.
View Article and Find Full Text PDF

The multiciliated cell (MCC) is an evolutionarily conserved cell type, which in vertebrates functions to promote directional fluid flow across epithelial tissues. In the conducting airway, MCCs are generated by basal stem/progenitor cells and act in concert with secretory cells to perform mucociliary clearance to expel pathogens from the lung. Studies in multiple systems, including epidermis, murine trachea, and zebrafish kidney, have uncovered a transcriptional network that regulates multiple steps of multiciliogenesis, ultimately leading to an MCC with hundreds of motile cilia extended from their apical surface, which beat in a coordinated fashion.

View Article and Find Full Text PDF

PARKIN, an E3 ligase mutated in familial Parkinson's disease, promotes mitophagy by ubiquitinating mitochondrial proteins for efficient engagement of the autophagy machinery. Specifically, PARKIN-synthesized ubiquitin chains represent targets for the PINK1 kinase generating phosphoS65-ubiquitin (pUb), which constitutes the mitophagy signal. Physiological regulation of PARKIN abundance, however, and the impact on pUb accumulation are poorly understood.

View Article and Find Full Text PDF