Publications by authors named "Rob J van't Hof"

Article Synopsis
  • * In studies with miR-324-null mice, researchers found that these mice had increased bone density and thickness, reduced lipid content in bone marrow, and higher bone formation rates, indicating a strong connection between miR-324 and bone maintenance.
  • * It was revealed that miR-324-5p targets key regulators in bone cells, such as Pin1 and Runx2, which influence the balance between bone formation and resorption, highlighting the potential for miR-324-related therapies in treating bone diseases.
View Article and Find Full Text PDF
Article Synopsis
  • Lead (Pb) can make bones weak and is found in many places in the environment.
  • Butyric acid, a substance made by bacteria in our gut from certain foods, helps keep bones healthy.
  • The study found that taking butyric acid can help fix the bone problems caused by lead exposure in mice and may also help people who consume it.
View Article and Find Full Text PDF

Objective: IĸB protein B cell lymphoma 3-encoded protein (BCL3) is a regulator of the NF-κB family of transcription factors. NF-κB signaling fundamentally influences the fate of bone-forming osteoblasts and bone-resorbing osteoclasts, but the role of BCL3 in bone biology has not been investigated. The objective of this study was to evaluate BCL3 in skeletal development, maintenance, and osteoarthritic pathology.

View Article and Find Full Text PDF
Article Synopsis
  • Paget's disease of bone (PDB) is a condition where some bones in the body grow and change too much.
  • Scientists found a gene called PML that seems to play a role in PDB because a specific gene variant is linked to lower levels of PML in people with the disease.
  • Mice without the PML gene showed more bone activity and differences in how their bone cells (like osteoclasts and osteoblasts) worked compared to normal mice, suggesting that PML helps control bone health.
View Article and Find Full Text PDF

Early onset familial Paget's disease of bone (EoPDB), familial expansile osteolysis, and expansile skeletal hyperphosphatasia are related disorders caused by insertion mutations in exon 1 of the TNFRSF11A gene, which encodes receptor activator of nuclear factor κB (RANK) protein. To understand the mechanisms underlying these disorders, we developed a mouse model carrying the 75dup27 mutation which causes EoPDB. Mice heterozygous for the mutation (Tnfrsf11a ) developed a PDB-like disorder with focal osteolytic lesions in the hind limbs with increasing age.

View Article and Find Full Text PDF
Article Synopsis
  • Lactation increases calcium needs, leading to bone loss in mothers, but recovery usually happens after weaning.
  • Low-protein diets during pregnancy and lactation resulted in significant bone loss, with recovery varying based on post-lactation diet changes.
  • Research indicates that a normal-protein diet is crucial for maintaining maternal bone health and muscle integrity during and after reproduction.
View Article and Find Full Text PDF

Objective: Cartilage destruction in osteoarthritis (OA) is mediated mainly by matrix metalloproteinases (MMPs) and ADAMTS. The therapeutic candidature of targeting aggrecanases has not yet been defined in joints in which spontaneous OA arises from genetic susceptibility, as in the case of the STR/Ort mouse, without a traumatic or load-induced etiology. In addition, we do not know the long-term effect of aggrecanase inhibition on bone.

View Article and Find Full Text PDF

Extracellular signal-regulated protein kinase 5 (ERK5) has been implicated during development and carcinogenesis. Nkx3.1-mediated Cre expression is a useful strategy to genetically manipulate the mouse prostate.

View Article and Find Full Text PDF

In patients with postmenopausal osteoporosis low bone volume is associated with high bone marrow adipose tissue (MAT). Moreover, high MAT is associated with increased fracture risk. This suggests an interaction between MAT and bone turnover, however literature remains equivocal.

View Article and Find Full Text PDF

Micro-CT analysis has become the standard method for assessing bone volume and architecture in small animals. However, micro-CT does not allow the assessment of bone turnover parameters such as bone formation rate and osteoclast (OC) number and surface. For these crucial variables histomorphometric analysis is still an essential technique.

View Article and Find Full Text PDF

Degenerative joint diseases such as osteoarthritis are characterised by aberrant region-specific bone formation and abnormal bone mineral content. A recent study suggested a role for the complement membrane attack complex in experimental models of osteoarthritis. Since CD59a is the principal regulator of the membrane attack complex in mice, we evaluated the impact of CD59a gene deletion upon maintenance of bone architecture.

View Article and Find Full Text PDF

Objective: Proteinase-activated receptor 2 (PAR2) deficiency protects against cartilage degradation in experimental osteoarthritis (OA). The wider impact of this pathway upon OA-associated pathologies such as osteophyte formation and pain is unknown. Herein, we investigated early temporal bone and cartilage changes in experimental OA in order to further elucidate the role of PAR2 in OA pathogenesis.

View Article and Find Full Text PDF

Introduction: Inflammatory joint diseases such as rheumatoid arthritis are associated with local bone erosions and systemic bone loss, mediated by increased osteoclastic activity. The receptor activator of nuclear factor (NF) κB ligand (RANKL) plays a key role in mediating inflammation-induced bone loss, whereas tumour necrosis factor (TNF) plays a central role in the inflammatory process. Here we tested whether a recently identified class of small molecule inhibitors of RANKL signalling (ABD compounds) also affect TNF signalling and whether these compounds inhibit inflammation in an animal model of rheumatoid arthritis.

View Article and Find Full Text PDF

Several studies have shown that in contrast to osteoporosis (OP), osteoarthritis (OA) is characterized by high bone mineral density (BMD). Bone strength not only depends on mineral content as determined by dual X-ray absorptiometry (DXA), but also on bone microarchitecture. We studied intertrochanteric bone from normal controls and OA and OP patients by bone histomorphometry (BHM) and microcomputed tomography (µCT) as well as DXA in order to first, test the differences between OA and OP comparing both groups to healthy controls, second, to assess variations between three different skeletal sites in controls and third, to determine the level of agreement between µCT, BHM, and DXA.

View Article and Find Full Text PDF

Endothelial nitric oxide synthase (eNOS) has long been held responsible for NO production by mechanically stimulated osteoblasts, but this has recently been disputed. We investigated whether one of the three known NOS isoforms is essential for NO production by mechanically stimulated osteoblasts in vitro and revisited the bone phenotype of the eNOS-/- mouse. Osteoblasts, obtained as outgrowths from mouse calvaria or long bones of wild-type (WT), eNOS-/-, inducible NOS-/- (iNOS-/-), or neuronal NOS-/- (nNOS-/-) mice, were subjected to mechanical stimulation by means of pulsating fluid flow (PFF); and NO production was determined.

View Article and Find Full Text PDF

We previously described a novel series of biphenyl carboxylic acid derivatives which have potent antiresorptive effects in vitro and in vivo and do not affect osteoblast function. However, none of the previous compounds showed oral activity, probably because they were esters, which would be expected to be metabolized very rapidly. Here, we tested whether derivatives where the ester link was replaced by a ketone link were orally active.

View Article and Find Full Text PDF

Biphenylketones were identified as novel inhibitors of NFkappaB activation. Structure-activity studies led to the identification of compound 4c, which had good potency against osteoclasts (IC50=0.8 microM), showed oral activity, and was able to completely prevent inflammation and bone loss in vivo.

View Article and Find Full Text PDF

Runx1 is highly expressed in chondroprogenitor and osteoprogenitor cells and in vitro experiments suggest that Runx1 is important in the early stages of osteoblast and chondrocyte differentiation. However, because Runx1 knockout mice are early embryonic lethal due to failure of hematopoiesis, the role of Runx1 in skeletogenesis remains unclear. We studied the role of Runx1 in skeletal development using a Runx1 reversible knockout mouse model.

View Article and Find Full Text PDF

Three polymorphisms (-1997G/T; -1663IndelT and +1245G/T) have been identified in the 5' flank of COL1A1 gene that are associated with osteoporosis but the underlying mechanism is unclear. Here we investigated the functional effects of these variants on COL1A1 transcription. Transcription was 2-fold higher with the osteoporosis-associated G-del-T haplotype compared with the common G-Ins-G haplotype.

View Article and Find Full Text PDF

We have previously shown that the nitrosylated flurbiprofen derivative HCT1026 inhibits bone resorption, both in vivo and in vitro, and that its mechanism of action is independent of nitric oxide release and prostaglandin synthesis inhibition. Here we describe the effects of HCT1026 on osteoclast formation, activity, survival and cell signalling in vitro. HCT1026 strongly inhibited osteoclast formation, activity and survival in murine osteoclast cultures, whereas macrophages and osteoblasts were unaffected.

View Article and Find Full Text PDF

Bisphosphonates are widely used in the treatment of osteoporosis, but they inhibit bone formation and blunt the anabolic effect of PTH. Here we describe a novel series of compounds that have potent antiresorptive effects in vitro and in vivo that do not adversely affect osteoblast function. The effects of the compounds on osteoclast formation and survival were studied on mouse osteoclasts generated from bone marrow macrophages and on osteoblast function using primary mouse calvarial osteoblast cultures and bone nodule cultures.

View Article and Find Full Text PDF

Bisphosphonates are widely used for the treatment of bone diseases associated with increased osteoclastic bone resorption. Bisphosphonates are known to inhibit biochemical markers of bone formation in vivo, but it is unclear to what extent this is a consequence of osteoclast inhibition or a direct inhibitory effect on cells of the osteoblast lineage. In order to investigate this issue, we studied the effects of various bisphosphonates on osteoblast growth and differentiation in vitro.

View Article and Find Full Text PDF

Increased osteoclastic bone resorption plays a central role in the pathogenesis of many bone diseases, and osteoclast inhibitors are the most widely used treatments for these diseases. We have identified and characterized a series of novel biphenylsulfonamide derivatives that have potent inhibitory effects on osteoclastic bone resorption in vitro and that prevent ovariectomy-induced bone loss in vivo. A number of aromatic substituted derivatives were prepared and a QSAR model was generated, which allowed accurate prediction of compound potency.

View Article and Find Full Text PDF

Unlabelled: A novel class of biphenylcarboxylic acid derivatives are described that inhibit osteoclastic bone resorption in vitro by promoting osteoclast apoptosis and that prevent ovariectomy-induced bone loss in vivo. The compounds act by a novel mechanism that seems to be distinct from existing antiresorptive drugs.

Introduction: Many common bone diseases such as osteoporosis, Paget's disease, and cancer-associated bone disease are characterized by excessive bone loss caused by increased osteoclastic activity.

View Article and Find Full Text PDF