Publications by authors named "Rob Fitzpatrick"

Aeration of wetland soils containing iron (Fe) sulfides can cause strong acidification due to the generation of large amounts of sulfuric acid and formation of Fe oxyhydroxy sulfate phases such as jarosite. Remediation by re-establishment of anoxic conditions promotes jarosite transformation to Fe oxyhydroxides and/or Fe sulfides, but the driving conditions and mechanisms are largely unresolved. We investigated a sandy, jarosite-containing soil (initial pH = 3.

View Article and Find Full Text PDF

pH is a "master variable" controlling many biogeochemical processes in soils. Acid sulfate soils undergo rapid and large pH changes from circumneutral pH under anaerobic soil conditions to sulfuric soils with ultra (pH < 3.5) and extremely (pH 3.

View Article and Find Full Text PDF

When previously oxidised acid sulphate soils are leached, they can release large amounts of protons and metals, which threaten the surrounding environment. To minimise the impact of the acidic leachate, protons and metals have to be retained before the drainage water reaches surrounding waterways. One possible amelioration strategy is to pass drainage water through permeable reactive barriers.

View Article and Find Full Text PDF

Sulfuric material is formed upon oxidation of sulfidic material; it is extremely acidic, and therefore, an environmental hazard. One option for increasing pH of sulfuric material may be stimulation of bacterial sulfate reduction. We investigated the effects of organic carbon addition and pH increase on sulfate reduction after re-flooding in ten sulfuric materials with four treatments: control, pH increase to 5.

View Article and Find Full Text PDF

Following the break of a severe drought in the Murray-Darling Basin, rising water levels restored subaqueous conditions to dried inland acid sulfate soils with sulfuric horizons (pH <3.5). Equilibrium dialysis membrane samplers were used to investigate in situ changes to soil acidity and abundance of metals and metalloids following the first 24 mo of restored subaqueous conditions.

View Article and Find Full Text PDF

Acid sulfate soils (ASS) with sulfuric material can be remediated through microbial sulfate reduction stimulated by adding organic matter (OM) and increasing the soil pH to >4.5, but the effectiveness of this treatment is influenced by soil properties. Two experiments were conducted using ASS with sulfuric material.

View Article and Find Full Text PDF

Acid sulfate soils with sulfuric material (pH<4) can have significant impacts on surface water quality and aquatic ecosystems due to low pH and high soluble metal concentrations in runoff and drainage discharges. There has been limited research on the complex geochemical transformations that occur along flow pathways from the soil acidity source to receiving waters. We studied the integrated geochemistry of metals in acid sulfate soils with sulfuric material, groundwater, drain and river water in the Lower Murray River (South Australia) over a 2 year period.

View Article and Find Full Text PDF

Large-scale exposure of acid sulfate soils during a hydrological drought in the Lower Lakes of South Australia resulted in acidification of surface water in several locations. Our aim was to describe the techniques used to monitor, assess and manage these acidification events using a field and laboratory dataset (n = 1,208) of acidic to circum-neutral pH water samples. The median pH of the acidified (pH < 6.

View Article and Find Full Text PDF