Synthetic photobiocatalysts are promising catalysts for valuable chemical transformations by harnessing solar energy inspired by natural photosynthesis. However, the synergistic integration of all of the components for efficient light harvesting, cascade electron transfer, and efficient biocatalytic reactions presents a formidable challenge. In particular, replicating intricate multiscale hierarchical assembly and functional segregation involved in natural photosystems, such as photosystems I and II, remains particularly demanding within artificial structures.
View Article and Find Full Text PDFAutonomous laboratories can accelerate discoveries in chemical synthesis, but this requires automated measurements coupled with reliable decision-making. Most autonomous laboratories involve bespoke automated equipment, and reaction outcomes are often assessed using a single, hard-wired characterization technique. Any decision-making algorithms must then operate using this narrow range of characterization data.
View Article and Find Full Text PDFMetal-organic polyhedra (MOPs) can exhibit tunable porosity and functionality, suggesting potential for applications such as molecular separations. MOPs are typically constructed by the bottom-up multicomponent self-assembly of organic ligands and metal ions, and the final functionality can be hard to program. Here, we used trianglsalen macrocycles as preorganized building blocks to assemble octahedral-shaped MOPs.
View Article and Find Full Text PDFMetal-organic frameworks (MOFs) are useful synthetic materials that are built by the programmed assembly of metal nodes and organic linkers. The success of MOFs results from the isoreticular principle, which allows families of structurally analogous frameworks to be built in a predictable way. This relies on directional coordinate covalent bonding to define the framework geometry.
View Article and Find Full Text PDFAutomation can transform productivity in research activities that use liquid handling, such as organic synthesis, but it has made less impact in materials laboratories, which require sample preparation steps and a range of solid-state characterization techniques. For example, powder X-ray diffraction (PXRD) is a key method in materials and pharmaceutical chemistry, but its end-to-end automation is challenging because it involves solid powder handling and sample processing. Here we present a fully autonomous solid-state workflow for PXRD experiments that can match or even surpass manual data quality, encompassing crystal growth, sample preparation, and automated data capture.
View Article and Find Full Text PDFCrystalline porous organic salts (CPOS) are a subclass of molecular crystals. The low solubility of CPOS and their building blocks limits the choice of crystallisation solvents to water or polar alcohols, hindering the isolation, scale-up, and scope of the porous material. In this work, high throughput screening was used to expand the solvent scope, resulting in the identification of a new porous salt, CPOS-7, formed from tetrakis(4-sulfophenyl)methane (TSPM) and tetrakis(4-aminophenyl)methane (TAPM).
View Article and Find Full Text PDFAngew Chem Int Ed Engl
August 2023
Hydrogen-bonded organic frameworks (HOFs) with low densities and high porosities are rare and challenging to design because most molecules have a strong energetic preference for close packing. Crystal structure prediction (CSP) can rank the crystal packings available to an organic molecule based on their relative lattice energies. This has become a powerful tool for the a priori design of porous molecular crystals.
View Article and Find Full Text PDFThe synthesis of a new porous organic cage decorated with isopropyl moieties (CC21) was achieved from the reaction of triformylbenzene and an isopropyl functionalised diamine. Unlike structurally analogous porous organic cages, its synthesis proved challenging due to competitive aminal formation, rationalised using control experiments and computational modelling. The use of an additional amine was found to increase conversion to the desired cage.
View Article and Find Full Text PDFMolecular packing controls optoelectronic properties in organic molecular nanomaterials. Here we report a donor-acceptor organic molecule (2,6-bis(4-cyanophenyl)-4-(9-phenyl-9H-carbazol-3-yl)pyridine-3,5-dicarbonitrile) that exhibits two aggregate states in aqueous dispersions: amorphous nanospheres and ordered nanofibres with π-π molecular stacking. The nanofibres promote sacrificial photocatalytic H production (31.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
August 2022
Porous materials that contain ultrafine pore apertures can separate hydrogen isotopes via kinetic quantum sieving (KQS). However, it is challenging to design materials with suitably narrow pores for KQS that also show good adsorption capacities and operate at practical temperatures. Here, we investigate a metal-organic cage (MOC) assembled from organic macrocycles and Zn ions that exhibits narrow windows (<3.
View Article and Find Full Text PDFA high-throughput sonochemical synthesis and testing strategy was developed to discover covalent organic frameworks (COFs) for photocatalysis. In total, 76 conjugated polymers were synthesized, including 60 crystalline COFs of which 18 were previously unreported. These COFs were then screened for photocatalytic hydrogen peroxide (HO) production using water and oxygen.
View Article and Find Full Text PDFPorosity and surface area analysis play a prominent role in modern materials science. At the heart of this sits the Brunauer-Emmett-Teller (BET) theory, which has been a remarkably successful contribution to the field of materials science. The BET method was developed in the 1930s for open surfaces but is now the most widely used metric for the estimation of surface areas of micro- and mesoporous materials.
View Article and Find Full Text PDFElectrochemically active covalent organic frameworks (COFs) are promising electrode materials for Li-ion batteries. However, improving the specific capacities of COF-based electrodes requires materials with increased conductivity and a higher concentration of redox-active groups. Here, we designed a series of pyrene-4,5,9,10-tetraone COF (PT-COF) and carbon nanotube (CNT) composites (denoted as PT-COFX, where = 10, 30, and 50 wt % of CNT) to address these challenges.
View Article and Find Full Text PDFChem Commun (Camb)
June 2021
Macrocycles are usually non-porous or barely porous in the solid-state because of their small intrinsic cavity sizes and tendency to close-pack. Here, we use a heterochiral pairing strategy to introduce porosity in a trianglimine macrocycle, by co-crystallising two macrocycles with opposing chiralities. The stable racemic trianglimine crystal contains an interconnected pore network that has a Brunauer-Emmett-Teller (BET) surface area of 355 m2 g-1.
View Article and Find Full Text PDFEthyl acetate is an important chemical raw material and solvent. It is also a key volatile organic compound in the brewing industry and a marker for lung cancer. Materials that are highly selective toward ethyl acetate are needed for its separation and detection.
View Article and Find Full Text PDFThree-dimensional (3D) covalent organic frameworks (COFs) are rare because there is a limited choice of organic building blocks that offer multiple reactive sites in a polyhedral geometry. Here, we synthesized an organic cage molecule () that was used as a triangular prism node to yield the first cage-based 3D COF, . This COF adopts an unreported 2-fold interpenetrated topology and exhibits reversible dynamic behavior, switching between a small-pore () structure and a large-pore () structure.
View Article and Find Full Text PDFTechnologies such as batteries, biomaterials and heterogeneous catalysts have functions that are defined by mixtures of molecular and mesoscale components. As yet, this multi-length-scale complexity cannot be fully captured by atomistic simulations, and the design of such materials from first principles is still rare. Likewise, experimental complexity scales exponentially with the number of variables, restricting most searches to narrow areas of materials space.
View Article and Find Full Text PDFA molecular crystal of a 2-D hydrogen-bonded organic framework (HOF) undergoes an unusual structural transformation after solvent removal from the crystal pores during activation. The conformationally flexible host molecule, , adapts its molecular conformation during activation to initiate a framework expansion. The microcrystalline activated phase was characterized by three-dimensional electron diffraction (3D ED), which revealed that uses out-of-plane anthracene units as adaptive structural anchors.
View Article and Find Full Text PDFPhotocatalytic conversion of CO into fuels is an important challenge for clean energy research and has attracted considerable interest. Here we show that tethering molecular catalysts-a rhenium complex, [Re(bpy)(CO)Cl]-together in the form of a crystalline covalent organic framework (COF) affords a heterogeneous photocatalyst with a strong visible light absorption, a high CO binding affinity, and ultimately an improved catalytic performance over its homogeneous Re counterpart. The COF incorporates bipyridine sites, allowing for ligation of the Re complex, into a fully π-conjugated backbone that is chemically robust and promotes light-harvesting.
View Article and Find Full Text PDFA structurally diverse family of 39 covalent triazine-based framework materials (CTFs) are synthesized by Suzuki-Miyaura polycondensation and tested as hydrogen evolution photocatalysts using a high-throughput workflow. The two best-performing CTFs are based on benzonitrile and dibenzo[,]thiophene sulfone linkers, respectively, with catalytic activities that are among the highest for this material class. The activities of the different CTFs are rationalized in terms of four variables: the predicted electron affinity, the predicted ionization potential, the optical gap, and the dispersibility of the CTFs particles in solution, as measured by optical transmittance.
View Article and Find Full Text PDFControl of pore window size is the standard approach for tuning gas selectivity in porous solids. Here, we present the first example where this is translated into a molecular porous liquid formed from organic cage molecules. Reduction of the cage window size by chemical synthesis switches the selectivity from Xe-selective to CH -selective, which is understood using Xe, H, and pulsed-field gradient NMR spectroscopy.
View Article and Find Full Text PDFThe separation of hydrogen isotopes for applications such as nuclear fusion is a major challenge. Current technologies are energy intensive and inefficient. Nanoporous materials have the potential to separate hydrogen isotopes by kinetic quantum sieving, but high separation selectivity tends to correlate with low adsorption capacity, which can prohibit process scale-up.
View Article and Find Full Text PDFPorous organic cages have emerged over the last 10 years as a subclass of functional microporous materials. However, among all of the organic cages reported, large multicomponent organic cages with 20 components or more are still rare. Here, we present an [8 + 12] porous organic imine cage, , which has an apparent surface area up to 1752 m g, depending on the crystallization and activation conditions.
View Article and Find Full Text PDFTwo new heteroleptic metal-organic framework materials show strong adsorption of H and ethanol. [Co (L1)(bdc) ], where L1=N ,N -bis(4-pyridinylmethyl)-2,5-dimethylbenzene-1,4-diamine and bdc is benzene-1,4-dicarboxylate, has a twofold interpenetrating pillared layer structure with pcu topology. It has a stepped, hysteretic EtOH adsorption that can be related to complicated phase and structural transformation behaviour that occurs on de-solvation and re-solvation, including major conformational changes to the geometry of the flexible L1 ligand.
View Article and Find Full Text PDFA completely unsymmetrical porous organic cage was synthesised from a C symmetrical building block that was identified by a computational screen. The cage was formed through a 12-fold imine condensation of a tritopic C symmetric trialdehyde with a ditopic C symmetric diamine in a [4 + 6] reaction. The cage was rigid and microporous, as predicted by the simulations, with an apparent Brunauer-Emmett-Teller surface area of 578 m g.
View Article and Find Full Text PDF