Active gibberellin (GA(1)) is an important mediator of thermoperiodic growth in pea. Plants grown under lower day than night temperature (negative DIF) elongate less and have reduced levels of GA(1) compared with plants grown at higher day than night temperature (positive DIF). By comparing the wild type (WT) and the elongated DELLA mutant la cry(s), this study has examined the effect of impaired GA signalling on thermoperiodic growth, photosynthesis, and respiration in pea.
View Article and Find Full Text PDFAn infectious cDNA clone of a Norwegian isolate of Poinsettia mosaic virus (PnMV) was generated. It consisted of 6,098 nucleotides and encoded a polyprotein of 219.5 kDa.
View Article and Find Full Text PDFAgrobacterium-mediated transformation for poinsettia (Euphorbia pulcherrima Willd. Ex Klotzsch) is reported here for the first time. Internode stem explants of poinsettia cv.
View Article and Find Full Text PDFThe physiological basis of thermoperiodic stem elongation is as yet poorly understood. Thermoperiodic control of gibberellin (GA) metabolism has been suggested as an underlying mechanism. We have investigated the influence of different day and night temperature combinations on GA levels, and diurnal steady-state expression of genes involved in GA biosynthesis (LS, LH, NA, PSGA20ox1, and PsGA3ox1) and GA deactivation (PsGA2ox1 and PsGA2ox2), and related this to diurnal stem elongation in pea (Pisum sativum L.
View Article and Find Full Text PDFThe effect of 16 different day (DT) and night (NT) temperature combinations (DT and NT 12, 17, 22 and 27 degrees C) on rosette leaf growth, flower stem elongation and flowering time in Arabidopsis thaliana Ler was investigated. Final leaf length decreased with increasing NT due to a combination of reduced elongation period and reduced elongation rate. Final stem length increased with increasing DT due to increased elongation rate, and decreased with increasing NT due to a decrease in elongation period.
View Article and Find Full Text PDF