Surface enhanced Raman spectroscopy (SERS) is gaining importance as sensing tool. However, wide application of the SERS technique suffers mainly from limitations in terms of uniformity of the plasmonics structures and sensitivity for low concentrations of target analytes. In this work, we present SERS specimens based on periodic arrays of 3D-structures coated with silver, fabricated by silicon top-down micro and nanofabrication (10 mm × 10 mm footprint).
View Article and Find Full Text PDFThe particles of heterogeneous catalysts differ greatly in size, morphology, and most importantly, in activity. Studying these catalyst particles in batch typically results in ensemble averages, without any information at the level of individual catalyst particles. To date, the study of individual catalyst particles has been rewarding but is still rather slow and often cumbersome.
View Article and Find Full Text PDFHigh-density arrays of silicon wedges bound by {111} planes on silicon (100) wafers have been created by combining convex corner lithography on a silicon dioxide hard mask with anisotropic, crystallographic etching in a repetitive, self-aligned multiplication procedure. A mean pitch of around 30 nm has been achieved, based on an initial pitch of ∼120 nm obtained through displacement Talbot lithography. The typical resolution of the convex corner lithography was reduced to the sub-10 nm range by employing an 8 nm silicon dioxide mask layer (measured on the {111} planes).
View Article and Find Full Text PDFConvex cylindrical silicon nanostructures, also referred to as silicon nanocones, find their value in many applications ranging from photovoltaics to nanofluidics, nanophotonics, and nanoelectronic applications. To fabricate silicon nanocones, both bottom-up and top-down methods can be used. The top-down method presented in this work relies on pre-shaping of silicon nanowires by ion beam etching followed by self-limited thermal oxidation.
View Article and Find Full Text PDFNanomaterials (Basel)
February 2022
Since inter- and intra-particle heterogeneities in catalyst particles are more the rule than the exception, it is advantageous to perform high-throughput screening for the activity of single catalyst particles. A multiphase system (gas/liquid/solid) is developed, where droplet-based microfluidics and optical detection are combined for the analysis of single catalyst particles by safely performing a hydrogenation study on in-house synthesized hollow Pd/SiO catalyst microparticles, in a polydimethylsiloxane (PDMS) microreactor. A two-phase segmented flow system of particle-containing droplets is combined with a parallel gas-reactant channel separated from the flow channel by a 50 μm thick gas permeable PDMS wall.
View Article and Find Full Text PDFSurface-enhanced Raman spectroscopy (SERS) is gaining importance as an ultrasensitive analytical tool for routine high-throughput analysis of a variety of molecular compounds. One of the main challenges is the development of robust, reproducible and cost-effective SERS substrates. In this work, we study the SERS activity of 3D silver mirror-like micro-pyramid structures extended in the z-direction up to 3.
View Article and Find Full Text PDFWe found that continuous films of gold (Au) on oxidized silicon (SiO) substrates, upon treatment with ultraviolet (UV)-ozone, exhibit strong adhesion to the SiO support. Importantly, the enhancement is independent of micro- or nanostructuring of such nanometer-thick films. Deposition of a second Au layer on top of the pretreated Au layer makes the adhesion stable for at least 5 months in environmental air.
View Article and Find Full Text PDFPeriodic noble metal nanoparticles offer a wide spectrum of applications including chemical and biological sensors, optical devices, and model catalysts due to their extraordinary properties. For sensing purposes and catalytic studies, substrates made of glass or fused-silica are normally required as supports, without the use of metallic adhesion layers. However, precise patterning of such uniform arrays of silica-supported noble metal nanoparticles, especially at sub-100 nm in diameter, is challenging without adhesion layers.
View Article and Find Full Text PDFOne of the main limitations of the technique surface-enhanced Raman scattering (SERS) for chemical detection relies on the homogeneity, reproducibility and reusability of the substrates. In this work, SERS active platforms based on 3D-fractal microstructures is developed by combining corner lithography and anisotropic wet etching of silicon, to extend the SERS-active area into 3D, with electrostatically driven Au@citrate nanoparticles (NPs) assembly, to ensure homogeneous coating of SERS active NPs over the entire microstructured platforms. Strong SERS intensities are achieved using 3D-fractal structures compared to 2D-planar structures; leading to SERS enhancement factors for R6G superior than those merely predicted by the enlarged area effect.
View Article and Find Full Text PDFThe novel concept of a microfluidic chip with an integrated three-dimensional fractal geometry with nanopores, acting as a gas transport membrane, is presented. The method of engineering the 3D fractal structure is based on a combination of anisotropic etching of silicon and corner lithography. The permeation of oxygen and carbon dioxide through the fractal membrane is measured and validated theoretically.
View Article and Find Full Text PDFThe extraction and recovery efficiency of swabs used to collect evidence at crime scenes is relatively low (typically <50%) for bacterial spores and body fluids. Cell-free deoxyribonucleic acid (DNA) is an interesting alternative compared to whole cells as a source for forensic analysis, but extraction and recovery from swabs has not been tested before using pure DNA. In this study cotton, foam, nylon flocked, polyester and rayon swabs are investigated in order to collect pure DNA isolated from saliva samples.
View Article and Find Full Text PDFMost photoanodes commonly applied in solar fuel research (e.g., of FeO, BiVO, TiO, or WO) are only active and stable in alkaline electrolytes.
View Article and Find Full Text PDFA lab-on-chip system, integrating an all-glass microfluidics and on-chip optical detection, was developed and tested. The microfluidic network is etched in a glass substrate, which is then sealed with a glass cover by direct bonding. Thin film amorphous silicon photosensors have been fabricated on the sealed microfluidic substrate preventing the contamination of the micro-channels.
View Article and Find Full Text PDFMicrofluidic stripline NMR technology not only allows for NMR experiments to be performed on small sample volumes in the submicroliter range, but also experiments can easily be performed in continuous flow because of the stripline's favorable geometry. In this study we demonstrate the possibility of dual-channel operation of a microfluidic stripline NMR setup showing one- and two-dimensional H, C and heteronuclear NMR experiments under continuous flow. We performed experiments on ethyl crotonate and menthol, using three different types of NMR chips aiming for straightforward microfluidic connectivity.
View Article and Find Full Text PDFThe spatioselective functionalization of silicon microwires with axial p/n junctions is achieved using the electronic properties of the junction. (Photo)electrochemical deposition of metals is demonstrated at the bottom and top of the wires in the dark and light, respectively. The junction depletion layer remains unmodified, which allows its visualization and comparison with theoretical calculations.
View Article and Find Full Text PDFMagnetic field B0 gradients are essential in modern Nuclear Magnetic Resonance spectroscopy and imaging. Although RF/B1 gradients can be used to fulfill a similar role, this is not used in common practice because of practical limitations in the design of B1 gradient coils. Here we present a new method to create B1 gradients using stripline RF coils.
View Article and Find Full Text PDFSilicon is one of the main components of commercial solar cells and is used in many other solar-light-harvesting devices. The overall efficiency of these devices can be increased by the use of structured surfaces that contain nanometer- to micrometer-sized pillars with radial p/n junctions. High densities of such structures greatly enhance the light-absorbing properties of the device, whereas the 3D p/n junction geometry shortens the diffusion length of minority carriers and diminishes recombination.
View Article and Find Full Text PDFTwo types of microfluidic systems, a porous hollow fiber and a thin supported membrane with an array of micromachined holes, are investigated for concentrating mass-limited analyte samples. Water evaporation is driven by the partial pressure difference across the hydrophobic membrane, induced by dry sweeping gas on the permeate side. An analytical model permitting clarification of the contribution of design and process parameters on acquisition of concentrated solution and prediction of achievable concentration factors is presented.
View Article and Find Full Text PDFThis paper presents a method for the fabrication of integrated porous silica layers in microfluidic channel networks by microfabrication techniques. Porous silica is obtained by anodization of silicon, followed by full conversion of the porous silicon network into porous silica by means of thermal oxidation. A series of experiments were performed with various channel layouts to determine the critical parameters, including the I-V characteristics and the optimal working potential for stable pore formation, during anodic etching.
View Article and Find Full Text PDFTwo-dimensional electrophoretic separations are one of the most promising tools for the continuously growing needs of different bioanalytical fields such as proteomics and metabolomics. In this work we present the design and the implementation of a two-dimensional electrophoretic separation coupled to mass spectrometry. We started our work studying the sample transfer characteristics of different microfluidic interfaces compatible with capillary coupling for two-dimensional electrophoretic separations.
View Article and Find Full Text PDFA polymer-brush-based material was applied for the formation and in situ immobilization of silver and palladium nanoparticles, as a catalytic coating on the inner wall of glass microreactors. The brush film was grown directly on the microchannel interior by means of atom-transfer radical polymerization (ATRP), which allows control over the polymer film thickness and therefore permits the tuning of the number of nanoparticles formed on the channel walls. The wide applicability of the catalytic devices is demonstrated for the reduction of 4-nitrophenol and for the Heck reaction.
View Article and Find Full Text PDF