Publications by authors named "Roaa Kadam"

Emerging resistance to the tyrosine kinase inhibitors that target the BCR-ABL1 oncoprotein has prompted research for novel therapeutics against chronic myeloid leukemia (CML). Herein, we evaluated the tumor inhibitory properties of the human Wharton's jelly stem cells (hWJSCs) co-culture (hWJSC-CC) and their extracts, namely, the hWJSC-conditioned medium (hWJSC-CM; 100%) and hWJSC-lysate (hWJSC-L; 15 μg/ml), on a CML cell line K562 . The hWJSCs expressed mesenchymal stem cell (MSC)-related cluster of differentiation (CD) markers and demonstrated mesodermal tissue differentiation potential.

View Article and Find Full Text PDF

Cytokines enhance tumour cell recognition via cytotoxic effector cells and are therefore effectively used in cancer immunotherapy. Mesenchymal stem cells have efficient homing potential and have been used to target and inhibit various types of cancer mediated by the release of soluble/bioactive factors. Initial evaluation of the human Wharton's jelly stem cell conditioned medium (hWJSC-CM) and cell lysate (hWJSC-CL) against an ovarian cancer cell line (OVCAR3) demonstrated their inhibitory effect .

View Article and Find Full Text PDF

Ovarian cancer is a highly lethal and the second highest in mortality among gynecological cancers. Stem cells either naïve or engineered are reported to inhibit various human cancers in both and . Herein we report the cancer inhibitory properties of human Wharton's jelly stem cell (hWJSC) extracts, namely its conditioned medium (hWJSC-CM) and cell lysate (hWJSC-CL) against two ovarian cancer cell lines (OVCAR3 and SKOV3) .

View Article and Find Full Text PDF

Particulate matter (PM) contains heavy metals that affect various cellular functions and gene expression associated with a range of acute and chronic diseases in humans. However, the specific effects they exert on the stem cells remain unclear. Here, we report the effects of PM collected from the city of Jeddah on proliferation, cell death, related gene expression and systems of biological analysis in bone marrow mesenchymal stem cells (BM-MSCs), with the aim of understanding the underlying mechanisms.

View Article and Find Full Text PDF

Background: Osteoarthritis (OA) is a progressive joint disease characterized by gradual degradation of extracellular matrix (ECM) components in the cartilage and bone. The ECM of cartilage is a highly specified structure that is mainly composed of type II collagen and provides tensile strength to the tissue via aggrecan and proteoglycans. However, changes in the ECM composition and structure can lead to loss of collagen type II and network integrity.

View Article and Find Full Text PDF

O1 Regulation of genes by telomere length over long distances Jerry W. Shay O2 The microtubule destabilizer KIF2A regulates the postnatal establishment of neuronal circuits in addition to prenatal cell survival, cell migration, and axon elongation, and its loss leading to malformation of cortical development and severe epilepsy Noriko Homma, Ruyun Zhou, Muhammad Imran Naseer, Adeel G. Chaudhary, Mohammed Al-Qahtani, Nobutaka Hirokawa O3 Integration of metagenomics and metabolomics in gut microbiome research Maryam Goudarzi, Albert J.

View Article and Find Full Text PDF

Introduction: The impact of arthroscopic temperature on joint tissues is poorly understood and it is not known how mesenchymal stem cells (MSCs) respond to the effects of heat generated by the device during the process of arthroscopy assisted experimental cell-based therapy. In the present study, we isolated and phenotypically characterized human bone marrow mesenchymal stem cells (hBMMSCs) from osteoarthritis (OA) patients, and evaluated the effect of arthroscopic heat on cells in suspension and pellet cultures.

Methods: Primary cultures of hBMMSCs were isolated from bone marrow aspirates of OA patients and cultured using DMEM supplemented with 10% FBS and characterized for their stemness.

View Article and Find Full Text PDF