Hydrodynamic attractors have recently gained prominence in the context of early stages of ultrarelativistic heavy-ion collisions at the RHIC and LHC. We critically examine the existing ideas on this subject from a phase space point of view. In this picture the hydrodynamic attractor can be seen as a special case of the more general phenomenon of dynamical dimensionality reduction of phase space regions.
View Article and Find Full Text PDFEarly efforts to understand complexity in field theory have primarily employed a geometric approach based on the concept of circuit complexity in quantum information theory. In a parallel vein, it has been proposed that certain deformations of the Euclidean path integral that prepare a given operator or state may provide an alternative definition, whose connection to the standard notion of complexity is less apparent. In this Letter, we bridge the gap between these two proposals in two-dimensional conformal field theories, by explicitly showing how the latter approach from path integral optimization may be given by a concrete realization within the standard gate counting framework.
View Article and Find Full Text PDFWe apply the recently developed notion of complexity for field theory to a quantum quench through a critical point in 1+1 dimensions. We begin with a toy model consisting of a quantum harmonic oscillator, and show that complexity exhibits universal scalings in both the slow and fast quench regimes. We then generalize our results to a one-dimensional harmonic chain, and show that preservation of these scaling behaviors in free field theory depends on the choice of norm.
View Article and Find Full Text PDF