Publications by authors named "Rizwan Muneer"

Nanoparticles have gained significance in modern science due to their unique characteristics and diverse applications in various fields. Zeta potential is critical in assessing the stability of nanofluids and colloidal systems but measuring it can be time-consuming and challenging. The current research proposes the use of cutting-edge machine learning techniques, including multiple regression analyses (MRAs), support vector machines (SVM), and artificial neural networks (ANNs), to simulate the zeta potential of silica nanofluids and colloidal systems, while accounting for affecting parameters such as nanoparticle size, concentration, pH, temperature, brine salinity, monovalent ion type, and the presence of sand, limestone, or nano-sized fine particles.

View Article and Find Full Text PDF

In the petroleum industry, the remaining oil is often extracted using conventional chemical enhanced oil recovery (EOR) techniques, such as polymer flooding. Nanoparticles have also greatly aided EOR, with benefits like wettability alteration and improvements in fluid properties that lead to better oil mobility. However, silica nanoparticles combined with polymers like hydrolyzed polyacrylamide (HPAM) improve polymer flooding performance with better mobility control.

View Article and Find Full Text PDF

Formation damage caused by fine migration and straining is a well-documented phenomenon in sandstone reservoirs. Fine migration and the associated permeability decline have been observed in various experimental studies, and this phenomenon has been broadly explained by the analysis of surface forces between fines and sand grains. The Derjaguin-Landau-Verwey-Overbeek (DLVO) theory is a useful tool to help understand and model the fine release, migration, and control phenomena within porous media by quantifying the total interaction energy of the fine-brine-rock (FBR) system.

View Article and Find Full Text PDF

Heavy metals are released into the environment through both human and natural sources, may have a direct hepatic toxicity and are involved in chronic liver diseases. Modification in the regulation of heavy metals metabolism enhanced hepatitis c virus (HCV) replication which ultimately reduced outcomes of anti-viral therapy in chronic HCV patients. Chelation therapy with new drugs seems to eradicate HCV and may prevent liver complications.

View Article and Find Full Text PDF