Victims of accidental hypothermia in hypothermic cardiac arrest (HCA) may survive with favorable neurologic outcome if early and continuous prehospital cardiopulmonary resuscitation (CPR) is started and continued during evacuation and transport. The efficacy of cerebral autoregulation during hypothermic CPR is largely unknown and is aim of the present experiment. Anesthetized pigs ( = 8) were surface cooled to HCA at 27°C before 3 h continuous CPR.
View Article and Find Full Text PDFPreviously, we showed that the cardiopulmonary resuscitation (CPR) for hypothermic cardiac arrest (HCA) maintained cardiac output (CO) and mean arterial pressure (MAP) to the same reduced level during normothermia (38°C) vs. hypothermia (27°C). In addition, at 27°C, the CPR for 3-h provided global O delivery (DO) to support aerobic metabolism.
View Article and Find Full Text PDFWe recently documented that cardiopulmonary resuscitation (CPR) generates the same level of cardiac output (CO) and mean arterial pressure (MAP) during both normothermia (38 °C) and hypothermia (27 °C). Furthermore, continuous CPR at 27 °C provides O delivery (ḊO) to support aerobic metabolism throughout a 3-h period. The aim of the present study was to investigate the effects of extracorporeal membrane oxygenation (ECMO) rewarming to restore ḊO and organ blood flow after prolonged hypothermic cardiac arrest.
View Article and Find Full Text PDFRewarming from accidental hypothermia and therapeutic temperature management could be complicated by cardiac dysfunction. Although pharmacologic support is often applied when rewarming these patients, updated treatment recommendations are lacking. There is an underlying deficiency of clinical and experimental data to support such interventions and this prevents the development of clinical guidelines.
View Article and Find Full Text PDFAims: Complete restitution of neurologic function after 6 h of pre-hospital resuscitation and in-hospital rewarming has been reported in accidental hypothermia patients with cardiac arrest (CA). However, the level of restitution of circulatory function during long-lasting hypothermic cardiopulmonary resuscitation (CPR) remains largely unknown. We compared the effects of CPR in replacing spontaneous circulation during 3 h at 27°C vs.
View Article and Find Full Text PDFNew Findings: What is the central question of this study? Absence of hypothermia-induced cardiac arrest is a strong predictor for a favourable outcome after rewarming. Nevertheless, detailed knowledge of preferences in organ blood flow during rewarming with spontaneous circulation is largely unknown. What is the main finding and its importance? In a porcine model of accidental hypothermia, we find, despite a significantly reduced cardiac output during rewarming, normal blood flow and O supply in vital organs owing to patency of adequate physiological compensatory responses.
View Article and Find Full Text PDF