Publications by authors named "Riyao Li"

Protein N-glycosylation is a common post-translational modification that plays significant roles on the structure, property, and function of glycoproteins. Due to N-glycan heterogeneity of naturally occurring glycoproteins, the functions of specific N-glycans on a particular glycoprotein are not always clear. Glycoprotein in vitro N-glycan engineering using purified recombinant enzymes is an attractive strategy to produce glycoproteins with homogeneous N-glycoforms to elucidate the specific functions of N-glycans and develop better glycoprotein therapeutics.

View Article and Find Full Text PDF

Carbohydrate-protein conjugates have diverse applications. They have been used clinically as vaccines against bacterial infection and have been developed for high-throughput assays to elucidate the ligand specificities of glycan-binding proteins (GBPs) and antibodies. Here, we report an effective process that combines highly efficient chemoenzymatic synthesis of carbohydrates, production of carbohydrate-bovine serum albumin (glycan-BSA) conjugates using a squarate linker, and convenient immobilization of the resulting neoglycoproteins on carboxylate-coated fluorescent magnetic beads for the development of a suspension multiplex array platform.

View Article and Find Full Text PDF

(Nm) serogroup W (NmW) is one of the six meningococcal serogroups that cause majority of invasive meningococcal diseases (IMD). Its capsular polysaccharide (CPS) is a virulence factor and is a key component in NmW CPS-protein conjugate vaccines. The current clinically used NmW CPS-protein conjugate vaccines are effective but the costs are high and the products are heterogeneous at both the CPS and the conjugate levels.

View Article and Find Full Text PDF
Article Synopsis
  • Sugar nucleotide-dependent glycosyltransferases (GTs) are crucial enzymes that help create glycosidic bonds in complex carbohydrates and glycoconjugates.
  • Advances in human GT accessibility and the identification of new bacterial GTs, alongside improved crystal structures, are enhancing the design of better catalysts for carbohydrate synthesis.
  • Recent developments include automated platforms for chemoenzymatic carbohydrate synthesis and progress in utilizing GTs for producing glycans and glycoconjugates from various sources like mammals, bacteria, and plants.
View Article and Find Full Text PDF

-Acetylated sialic acid has been found in the serogroup W (NmW) capsular polysaccharide (CPS) and is a required structural component of clinically used NmW CPS-based polysaccharide and polysaccharide-conjugate vaccines. The role of sialic acid -acetylation in NmW CPS, however, is not clearly understood. This is partially due to the lack of a precise control of the percentage and the location of -acetylation which is labile and susceptible to migration.

View Article and Find Full Text PDF

With the continuing advancement of carbohydrate chemical synthesis, bacterial glycomes have become increasingly attractive and accessible synthetic targets. Although bacteria also produce carbohydrate-containing secondary metabolites, our review here will cover recent chemical synthetic efforts on bacterial surface glycans. The obtained compounds are excellent candidates for the development of improved structurally defined glycoconjugate vaccines to combat bacterial infections.

View Article and Find Full Text PDF

While multiple α 1-2-mannosidases are necessary for glycoprotein N-glycan maturation in vertebrates, a single bacterial α1-2-mannosidase can be sufficient to cleave all α1-2-linked mannose residues in host glycoprotein N-glycans. We report here the characterization and crystal structure of a new α1-2-mannosidase (EfMan-I) from Enterococcus faecalis, a Gram-positive opportunistic human pathogen. EfMan-I catalyzes the cleavage of α1-2-mannose from not only oligomannoses but also high-mannose-type N-glycans on glycoproteins.

View Article and Find Full Text PDF

O-GalNAc glycans or mucin-type glycans are common protein post-translational modifications in eukaryotes. Core 2 O-GalNAc glycans are branched structures that are broadly distributed in glycoproteins and mucins of all types of cells. To better understand their biological roles, it is important to obtain structurally defined Core 2 O-GalNAc glycans.

View Article and Find Full Text PDF