Proc Natl Acad Sci U S A
December 2012
Neural networks in the spinal cord transform signals from the brain into coordinated locomotor movements. An optimal adjustment of the speed of locomotion entails a precise order of recruitment of interneurons underlying excitation within these networks. However, the mechanisms encoding the recruitment threshold of excitatory interneurons have remained unclear.
View Article and Find Full Text PDFMotor behavior is generated by specific neural circuits. Those producing locomotion are located in the spinal cord, and their activation depends on descending inputs from the brain or on sensory inputs. In this study, we have used an in vitro brainstem-spinal cord preparation from adult zebrafish to localize a region where stimulation of descending inputs can induce sustained locomotor activity.
View Article and Find Full Text PDFLocomotor movements are coordinated by a network of neurons that produces sequential muscle activation. Different motoneurons need to be recruited in an orderly manner to generate movement with appropriate speed and force. However, the mechanisms governing recruitment order have not been fully clarified.
View Article and Find Full Text PDFTo understand the intrinsic operation of spinal networks generating locomotion, we need to not only characterize the constituent neurons and their connectivity, but also determine the role of intrinsic modulation in shaping the final motor output. We have focused on the effects of nitric oxide (NO) on the locomotor frequency and the underlying synaptic mechanisms in the lamprey spinal cord. To identify the source of NO, we used NADPH-diaphorase histochemistry and nNOS immunocytochemistry.
View Article and Find Full Text PDFSerotonin (5-HT) plays an important role in shaping the activity of the spinal networks underlying locomotion in many vertebrate preparations. At larval stages in zebrafish, 5-HT does not change the frequency of spontaneous swimming; and it only decreases the quiescent period between consecutive swimming episodes. However, it is not known whether 5-HT exerts similar actions on the locomotor network at later developmental stages.
View Article and Find Full Text PDFThe zebrafish is an attractive model system for studying the function of the spinal locomotor network by combining electrophysiological, imaging, and genetic approaches. Thus far, most studies have been focusing on embryonic and larval stages. In this study we have developed an in vitro preparation of the isolated spinal cord from adult zebrafish in which locomotor activity can be induced while the activity of single neurons can be monitored using whole cell recording techniques.
View Article and Find Full Text PDFTo understand how the spinal central pattern generators produce locomotor movements, it is necessary to characterize the network's connectivity, the intrinsic properties of the constituent neurons and the modulatory mechanisms. Modulation operating within spinal locomotor networks is required for the generation of the final motor output. In this review, we have summarized how endocannabinoids released by locomotor network neurons contribute to setting the baseline locomotor frequency.
View Article and Find Full Text PDF