Publications by authors named "Riyad Sadek"

Background: 's venom has shown immunomodulation of cytokines release in mice and selective cytotoxicity on cancer cells in a dose-dependent manner, highlighting an anticancer potential. Here, we extend these findings by elucidating the sensitivity of murine B16 skin melanoma and 3-MCA-induced murine fibrosarcoma cell lines to 's venom and its effect on tumor growth in vivo.

Methods: The toxicity of the venom on B16 and MCA cells was assessed using flow cytometry and xCELLigence assays.

View Article and Find Full Text PDF

Snake venom serves as a tool of defense against threat and helps in prey digestion. It consists of a mixture of enzymes, such as phospholipase A2, metalloproteases, and l-amino acid oxidase, and toxins, including neurotoxins and cytotoxins. Beside their toxicity, venom components possess many pharmacological effects and have been used to design drugs and as biomarkers of diseases.

View Article and Find Full Text PDF

Background: Snakebites lead to at least 421,000 envenomations and result in more than 20,000 deaths per year worldwide. Few reports exist in the Mediterranean region. This study describes demographic and clinical characteristics, treatment modalities, and outcomes of snakebites in Lebanon.

View Article and Find Full Text PDF

Beside their toxicity, snake venom components possess several pharmacological effects and have been used to design many drugs. Recently, the cytotoxic, antibacterial, vasorelaxant, pro- and anti-coagulant as well as inflammatory activities of venom have been described . However, the effects of this Lebanese snake venom on the immune system has not been established yet.

View Article and Find Full Text PDF

Because snake venoms are complex mixtures of bioactive molecules, snake bites produce a large panel of symptoms which cannot be totally prevented by current antivenoms. Thus investigating plant extracts for antivenomics therapy approaches seemed relevant. Here, we evaluated the potency of the aqueous Buds extract of (ABEE) to counteract the main enzymatic activities of venom.

View Article and Find Full Text PDF

Context: The Viperidae family venom is a rich source of bioactive compounds such as many proteases, which cause tissue necrosis and affect mostly the vascular system. However, the venom exhibits therapeutic potentials and has contributed to the development of some medical drugs. Specifically, the Montivipera bornmuelleri venom has shown to exhibit antibacterial, pro-inflammatory and antifungal activities.

View Article and Find Full Text PDF

Molecular richness of snake venoms is an important source of proteins and toxins with potent effects on the cardiovascular system. The alteration of the vascular system in the victim after a venomous snake bite is usually expressed by a significant decrease in blood pressure. Therefore, exploring snake venom to extract and characterize its biomolecules is of considerable medical interest, and formed the basis of this study.

View Article and Find Full Text PDF

The L-amino acid oxidase (LAAO) is a multifunctional enzyme, able to partake in different activities including antibacterial activity. In this study, a novel LAAO (Mb-LAAO) was isolated from the venom of M. bornmuelleri snake using size exclusion chromatography followed by RP-HPLC and partially characterized.

View Article and Find Full Text PDF