Split-thickness skin grafts are widely used to treat chronic wounds. Procedure design requires surgeons to predict how much a patch of the patient's own skin expands when it is meshed with rows of slits and stretched over a larger wound area. Accurate prediction of graft expansion remains a challenge, with current models overestimating the actual expansion, leading to suboptimal outcomes.
View Article and Find Full Text PDFPorphyrin-based photosensitizers are proven generators of reactive oxygen species (ROS), such as singlet oxygen, and used as anti-cancer therapeutic agents. However, most of these compounds suffer from potential drawbacks due to limited photostability, hydrophobicity, aggregation propensity, and low cellular uptake. Ultrasmall fluorescent graphene quantum dots (GQDs) have emerged as the next-generation carriers for drugs and have gained reputation in the pharmaceutical domain.
View Article and Find Full Text PDFDaunomycin (DN) is a well-known chemotherapy drug frequently used in treating acute myeloid and lymphoblastic leukemia. It needs to be delivered to the therapeutic target by a delivering agent that beats the blood-brain barrier. DN is known to be specifically located at the membrane surface and scantly to the bilayer.
View Article and Find Full Text PDFDaunomycin (DN) is a natural product isolated from Streptomyces and it is widely used as a chemotherapeutic medication because of its antitumour properties. It is an anthracycline antibiotic that inhibits virus multiplication and shows activity against acute leukemia. This drug is either injected into a vein of the subject or typically delivered to cellular nuclei by polymeric or metallic nanoparticles and liposomal or proteinous substrates.
View Article and Find Full Text PDFWe report a unique phenomenon of physical adsorption of coumarin 6-β-cyclodextrin (C6-β-CD) inclusion nanostructures on graphene oxide (GO) nanosheets, thus inducing ground-state electron transfer from the C6-β-CD composite to GO. On excitation, the C6-β-CD composite initially transfers energy to the attached GO surface and subsequently collides with similar C6-β-CD@GO adducts leading to dynamic quenching of energy. The ground-state two-electron transfer process has been confirmed by cyclic voltammetry in aqueous medium, whereas the excited-state processes were inferred from steady-state and time-resolved fluorescence spectroscopy.
View Article and Find Full Text PDF