The expression of the angiotensin-converting enzyme 2 (ACE2) is altered in multiple chronic kidney diseases like hypertension and renal fibrosis, where the signaling from the basal membrane proteins is critical for the development and progression of the various pathologies. Integrins are heterodimeric cell surface receptors that have important roles in the progression of these chronic kidney diseases by altering various cell signaling pathways in response to changes in the basement membrane proteins. It is unclear whether integrin or integrin-mediated signaling affects the ACE2 expression in the kidney.
View Article and Find Full Text PDFKidney collecting system development requires integrin-dependent cell-extracellular matrix interactions. Integrins are heterodimeric transmembrane receptors consisting of α and β subunits; crucial integrins in the kidney collecting system express the β1 subunit. The β1 cytoplasmic tail has two NPxY motifs that mediate functions by binding to cytoplasmic signaling and scaffolding molecules.
View Article and Find Full Text PDFIntegrins are transmembrane receptors composed of α and β subunits. Although most integrins contain β1, canonical activation mechanisms are based on studies of the platelet integrin, αIIbβ3. Its inactive conformation is characterized by the association of the αIIb transmembrane and cytosolic domain (TM/CT) with a tilted β3 TM/CT that leads to activation when disrupted.
View Article and Find Full Text PDFEpithelial cells lining the gastrointestinal tract and kidney have different abilities to facilitate paracellular and transcellular transport of water and solutes. In the kidney, the proximal tubule allows both transcellular and paracellular transport, while the collecting duct primarily facilitates transcellular transport. The claudins and E-cadherin are major structural and functional components regulating paracellular transport.
View Article and Find Full Text PDFLoss of β1 integrin expression inhibits renal collecting-system development. Two highly conserved NPXY motifs in the distal β1 tail regulate integrin function by associating with phosphtyrosine binding (PTB) proteins, such as talin and kindlin. Here, we define the roles of these two tyrosines in collecting-system development and delineate the structural determinants of the distal β1 tail using nuclear magnetic resonance (NMR).
View Article and Find Full Text PDF