Globally increasing antibiotic resistance has been linked to the extensive use of antibiotics in medical, veterinary, and agricultural Practices. This study aims to investigate the correlations of antimicrobial-resistant of various pathogens in three compartments: humans, animals and the environment in India and Germany. A systematic search was carried out in Medline via PubMed, Google Scholar, and science direct, including studies published in 2022.
View Article and Find Full Text PDFBreast cancer (BC) remains a leading cause of morbidity and mortality among women worldwide, with triple-negative breast cancer (TNBC) posing significant treatment challenges due to its aggressive phenotype and resistance to conventional therapies. Recent advancements in nanocarrier technology offer promising solutions for enhancing drug delivery, improving bioavailability, and increasing drug accumulation at tumor sites through targeted approaches. This review delves into the latest innovations in BC detection and treatment, highlighting the role of nanocarriers like polymeric micelles, liposomes, and magnetic nanoparticles in overcoming the limitations of traditional therapies.
View Article and Find Full Text PDFThe rise in antimicrobial resistance, the increasing occurrence of bacterial, and fungal infections, and the challenges posed by polymicrobial biofilms necessitate the exploration of innovative therapeutic strategies. Silver-based antimicrobials have garnered attention for their broad-spectrum activity and multimodal mechanisms of action. However, their effectiveness against single-species or polymicrobial biofilms remains limited.
View Article and Find Full Text PDFBackground: Exosome (EXOs) are rapidly being identified as key mediators of cell-to-cell communication. They convey biologically active molecules to target cells, serve important roles in a range of physiological and pathological processes, and have enormous potential as novel therapeutic strategies.
Methods: Preclinical research published between 2019 and 2023 provided the study's data searched on different medline search engine, and clinicaltrials.
Biofilm-mediated wound infections pose a significant challenge due to the limitations of conventional antibiotics, which often exhibit narrow-spectrum activity, fail to eliminate recurrent bacterial contamination, and are unable to penetrate the biofilm matrix. While the search for alternatives has explored the use of metal nanoparticles and synthetic biocides, these solutions often suffer from unintended toxicity to surrounding tissues and lack controlled administration and release. In this study, we engineered a pH-responsive release-active dressing film based on carboxymethyl cellulose, incorporating a synthetic antibacterial molecule (SAM-17).
View Article and Find Full Text PDFManagement of infections at ocular injury often requires prolonged and high dose of antibiotic, which is associated with challenges of antibiotic resistance and bacterial biofilm formation. Tissue glues are commonly used for repairing ocular tissue defects and tissue regeneration, but they are ineffective in curing infection. There is a critical need for antibacterial ocular bio-adhesives capable of both curing infection and aiding wound closure.
View Article and Find Full Text PDFA novel inorganic-organic-inorganic ternary bioactive material formulated on antimicrobial peptide-based polymer has been reported. Supramolecular approach has been employed to incorporate molecularly crowded tyrosine-based polymer stabilized silver nanoparticles into membrane bound vesicles exploiting polyoxometalate-triggered surface templating strategy. Utilizing the covalent reversible addition fragmentation chain transfer (RAFT) polymerization and exploiting templated supramolecular architectonics at biopolymer interface, the bioactive ternary polymeric nanohybrids have been designed against Shigellosis leveraging the antibacterial activities of silver nanoparticle, cationic amphiphilic tyrosine polymer and inorganic polyoxometalate.
View Article and Find Full Text PDFCatheter-associated urinary tract infections (CAUTIs) pose a significant challenge in hospital settings. Current solutions available on the market involve incorporating antimicrobials and antiseptics into catheters. However, challenges such as uncontrolled release leading to undesirable toxicity, as well as the prevalence of antimicrobial resistance reduce the effectiveness of these solutions.
View Article and Find Full Text PDFBackground: Animal-assisted therapy, also known as pet therapy, is a therapeutic intervention that involves animals to enhance the well-being of individuals across various populations and settings.
Objective: This systematic study aims to assess the outcomes of animal-assisted therapy interventions and explore the associated policies.
Methods: A total of 16 papers published between 2015 and 2023 were selected for analysis.
The "One Health" initiative is a critical strategy that recognizes the interconnectedness between human, animal, and environmental health in the spread and containment of infectious pathogens. With the ease of global transportation, transboundary disease outbreaks pose a significant threat to food safety and security, endangering public health and having a negative economic impact. Traditional diagnostic techniques based on genotypic and phenotypic analyses are expensive, time-consuming, and cannot be translated into point-of-care tools, hindering effective disease management and control.
View Article and Find Full Text PDFDespite advancements in preventive measures and hospital protocols, surgical site infections (SSIs) remain a significant concern following surgeries. Sutures, commonly used for wound closure, can serve as a platform for microbial adherence and contamination, leading to extensive debridement and recurrent antibiotic therapy. The emergence of drug resistance and the formation of biofilms on sutures have further complicated the management of SSIs.
View Article and Find Full Text PDFPurpose: To describe the subretinal hyporeflective globule in cases of central serous chorioretinopathy (CSC).
Methods: A retrospective analysis of consecutive cases of CSC presenting to a tertiary eye care center in eastern India was conducted. Subretinal hyporeflective globules were identified as small globular lesions below the external limiting membrane/ellipsoid zone, but above the RPE layer.
Probiotics have gained a significant attention as a promising way to improve gut health and overall well-being. The increasing recognition of the potential health advantages associated with functional food products, leading to a specific emphasis on co-encapsulating probiotic bacteria and bioactive compounds within a unified matrix. To further explore this concept, a meta-analysis was performed to assess the effects of probiotics encapsulated in nanoparticles.
View Article and Find Full Text PDFGram-negative bacterial infections pose a significant challenge due to two major resistance elements, including the impermeability of the outer membrane and the overexpression of efflux pumps, which contribute to antibiotic resistance. Additionally, the coexistence of multispecies superbugs in mixed species biofilms further complicates treatment, as these infections are refractory to most antibiotics. To address this issue, combining obsolete antibiotics with non-antibiotic adjuvants that target bacterial membranes has shown promise in combating antibacterial resistance.
View Article and Find Full Text PDFBackground: Antimicrobial resistance (AMR) is a critical global issue that poses significant threats to human health, animal welfare, and the environment. With the increasing emergence of resistant microorganisms, the effectiveness of current antimicrobial medicines against common infections is diminishing. This study aims to conduct a competitive meta-analysis of surveillance data on resistant microorganisms and their antimicrobial resistance patterns in two countries, Egypt and the United Kingdom (UK).
View Article and Find Full Text PDFAntimicrobial resistance (AMR) is a growing public health concern worldwide, and it poses a significant threat to human, animal, and environmental health. The overuse and misuse of antibiotics have contributed significantly and others factors including gene mutation, bacteria living in biofilms, and enzymatic degradation/hydrolyses help in the emergence and spread of AMR, which may lead to significant economic consequences such as reduced productivity and increased health care costs. Nanotechnology offers a promising platform for addressing this challenge.
View Article and Find Full Text PDFMicrobial colonization on urinary and intravascular catheter surfaces results in steeply rising cases of catheter-associated infections as well as blood stream infections. Currently marketed efforts include impregnation and loading of antimicrobials and antiseptics that leach out into the local environment and inactivate microbes. However, they suffer from uncontrolled release, induction of resistance, and undesired toxicity.
View Article and Find Full Text PDFMany novel medical therapies use nanoparticle-based drug delivery systems, including nanomaterials through drug delivery systems, diagnostics, or physiologically active medicinal products. The approval of nanoparticles with advanced therapeutic and diagnostic potentials for applications in medication and immunization depends strongly on their synthesizing procedure, efficiency of functionalization, and biological safety and biocompatibility. Nanoparticle biodistribution, absorption, bioavailability, passage across biological barriers, and biodistribution are frequently assessed using bespoke and biological models.
View Article and Find Full Text PDFThe continuous intervention of multidrug-resistant (MDR) bacterial infections worsens and slows the dynamicity of natural wound healing processes. Fortunately, antibiotics, metal ions, or metal nanoparticle-loaded antimicrobial hydrogels have been developed to tackle infections at injury sites and speed up the healing process. Despite their success, these marketed released based hydrogels are still limited owing to their lack of broad-spectrum activity, inability to tackle biofilm-associated infections, susceptibility towards resistance development, fast release kinetics, and mild to moderate toxicity.
View Article and Find Full Text PDFDrug Target Insights
November 2022
Objectives:: Excessive use of antibiotics has increased antimicrobial resistance (AMR) worldwide, which is a major public concern among the countries. To control this threat proper monitoring of the antimicrobial usage with increasing rate of AMR is required. Moreover, alternatives for antibiotics are surveyed and are being researched for quick use in the future.
View Article and Find Full Text PDFMicrobial adhesion and contamination on shared surfaces can lead to life-threatening infections with serious impacts on public health, economy, and clinical practices. The traditional use of chemical disinfectants for sanitization of surfaces, however, comes with its share of health risks, such as hazardous effects on the eyes, skin, and respiratory tract, carcinogenicity, as well as environmental toxicity. To address this, we have developed a nonleaching quaternary small molecule (QSM)-based sprayable coating which can be fabricated on a wide range of surfaces such as nylon, polyethylene, surgical mask, paper, acrylate, and rubber in a one-step, photocuring technique.
View Article and Find Full Text PDFSurges in infectious diseases and their transmission in households and commercial and healthcare settings have increased the use of polymeric materials as protective covers. Despite ongoing efforts, conventional polymeric materials still pose the threat of surface-associated transmission of pathogens due to the fact that they lack antimicrobial properties. Here, we have developed an easy-to-fabricate polymeric sheet [quaternary polymeric transparent sheet (QPTS)] that shows an excellent antimicrobial property and is also transparent in nature, increasing its practical applications in a wide range of surfaces.
View Article and Find Full Text PDFThe increasing incidence of microbial infections and a limited arsenal of effective antibacterial and antifungal agents have entailed the need for new broad-spectrum therapeutics. Polymer-inorganic nanocomposites have emerged as an integral choice of antimicrobials but are limited by complicated synthesis, narrow-spectrum activity, and poor efficacy. Herein, chloride counterions of a nontoxic, moderately antibacterial polymer have been explored for nanoprecipitation-based synthesis of water-soluble polymer-silver chloride nanocomposites.
View Article and Find Full Text PDFACS Biomater Sci Eng
August 2022
Hemorrhage during accidents or surgery is a significant challenge that can contribute to mortality. This is further aggravated due to bacterial infections at the injured site. Therefore, rapid application of a hemostatic and antibacterial material is highly necessary as a pretreatment for patients' survival.
View Article and Find Full Text PDFWith the increasing focus on healthcare research in the current times, therapeutic and biomaterial interventions for healing of wounds and mitigation of wound-associated infections have seen expedited progress. Conventional approaches consist of release-active gels, which demonstrate leaching of antimicrobials, such as antibiotics, metal ions, etc. However, these systems suffer from the disadvantages of burst release, reservoir exhaustion, and associated toxicity.
View Article and Find Full Text PDF