Publications by authors named "Riya Ganguly"

Fatty acids come in a variety of structures and, because of this, create a variety of functions for these lipids. Some fatty acids have a role to play in energy metabolism, some help in lipid storage, cell structure, the physical state of the lipid, and even in food stability. Fatty acid metabolism plays a particularly important role in meeting the energy demands of the heart.

View Article and Find Full Text PDF

The omega-3 fatty acid, alpha linolenic acid (ALA) found in plant-derived foods induces significant cardiovascular benefits when ingested. ALA may be cardioprotective during ischemia; however, the mechanism(s) responsible for this effect is unknown. Isolated adult rat cardiomyocytes were exposed to medium containing ALA for 24 h and then exposed to non-ischemic (control), simulated ischemia (ISCH), or simulated ischemia/reperfusion (IR) conditions.

View Article and Find Full Text PDF

Dietary trans-fats are strongly associated with heart disease. However, the capacity for the tissues of the body, and specifically the heart, to take up trans-fats is unknown. It is also unknown if different trans-fats have different uptake capacities in the heart and other tissues of the body.

View Article and Find Full Text PDF

Cardiovascular disease remains the leading cause of death today. Trans fatty acids have been identified as an important cause of cardiovascular disease and the resulting clinical end points such as strokes and heart attacks. Although legislative efforts have limited the trans fats in our diet, significant amounts remain.

View Article and Find Full Text PDF

Objective: Adiponectin is known to confer its cardioprotective effects in obesity and type 2 diabetes, mainly by regulating glucose and fatty acid metabolism in cardiomyocytes. Dynamic actin cytoskeleton remodeling is involved in regulation of multiple biological functions, including glucose uptake. Here we investigated in neonatal cardiomyocytes whether adiponectin induced actin cytoskeleton remodeling and if this played a role in adiponectin-stimulated glucose uptake.

View Article and Find Full Text PDF

Fatty acids have an important role in providing energy for sustained contractile activity and viability of the heart. However, considerable evidence now supports a role for fatty acids in the modulation of cardiovascular pathology as well. This may be beneficial or detrimental due to the structural differences in the various fatty acids.

View Article and Find Full Text PDF

Coronary heart disease is becoming a worldwide epidemic and diet and lifestyle are well known contributing factors. Identifying the kinds of foods that may have a cardioprotective or cardiotoxic effect and understanding their molecular mechanisms of action has become of increasing importance. Through largely epidemiological evidence, trans fatty acid (TFA) intake has been associated with a variety of cardiovascular complications including atherosclerosis.

View Article and Find Full Text PDF

Altered leptin action has been implicated in the pathophysiology of heart failure in obesity, a hallmark of which is extracellular matrix remodeling. Here, we characterize the direct influence of leptin on matrix metalloproteinase (MMP) activity in primary adult rat cardiac fibroblasts and focus on elucidating the molecular mechanisms responsible. Leptin increased expression and cell surface localization of membrane type 1 (MT1)-MMP, measured by cell surface biotinylation assay and antibody-based colorimetric detection of an exofacial epitope in intact cells.

View Article and Find Full Text PDF

Cardiomyocyte substrate utilization is important in maintaining optimal cardiac function. Adiponectin has been shown to confer cardioprotective effects in part via regulating glucose and fatty acid uptake and oxidation in cardiomyocytes. Here we investigated mechanisms whereby adiponectin mediates a particular metabolic effect by focusing on lipoprotein lipase (LPL), an enzyme that increases free fatty acid availability to the heart by breakdown of chylomicrons and very-low-density lipoproteins in circulation.

View Article and Find Full Text PDF

Adiponectin promotes cardioprotection by various mechanisms, and this study used primary cardiomyocytes and the isolated working perfused heart to investigate cardiometabolic effects. We show in adult cardiomyocytes that adiponectin increased CD36 translocation and fatty acid uptake as well as insulin-stimulated glucose transport and Akt phosphorylation. Coimmunoprecipitation showed that adiponectin enhanced association of AdipoR1 with APPL1, subsequent binding of APPL1 with AMPKα2, which led to phosphorylation and inhibition of ACC and increased fatty acid oxidation.

View Article and Find Full Text PDF