In the context of global warming, although the coordinated development of tourism has led to regional economic growth, the high energy consumption-driven effects of such development have also led to environmental degradation. This research combines the undesired output of the Super-SBM model and social network analysis methods to determine the eco-efficiency of provincial tourism in China from 2010-2019 and analyzes its spatial correlation characteristics as well as its influencing factors. The aim of the project is to improve China's regional tourism eco-efficiency and promote cross-regional tourism correlation.
View Article and Find Full Text PDFInt J Environ Res Public Health
December 2021
Land surface temperature (LST) is a joint product of physical geography and socio-economics. It is important to clarify the spatial heterogeneity and binding factors of the LST for mitigating the surface heat island effect (SUHI). In this study, the spatial pattern of UHI in Fuzhou central area, China, was elucidated by and hot-spot analysis.
View Article and Find Full Text PDFGuang Pu Xue Yu Guang Pu Fen Xi
February 2013
Taking 51 field measured hyperspectral data with different pest levels in Yanping, Fujian Province as objects, the spectral reflectance and first derivative features of 4 levels of healthy, mild, moderate and severe insect pest were analyzed. On the basis of 7 detecting parameters construction, the pest level detecting models were built. The results showed that (1) the spectral reflectance of Pinus massoniana with pests were significantly lower than that of healthy state, and the higher the pest level, the lower the reflectance; (2) with the increase in pest level, the spectral reflectance curves' "green peak" and "red valley" of Pinus massoniana gradually disappeared, and the red edge was leveleds (3) the pest led to spectral "green peak" red shift, red edge position blue shift, but the changes in "red valley" and near-infrared position were complicated; (4) CARI, RES, REA and REDVI were highly relevant to pest levels, and the correlations between REP, RERVI, RENDVI and pest level were weak; (5) the multiple linear regression model with the variables of the 7 detection parameters could effectively detect the pest levels of Dendrolimus punctatus Walker, with both the estimation rate and accuracy above 0.
View Article and Find Full Text PDF