Background: Glioblastoma is the most aggressive adult primary brain cancer, characterized by significant heterogeneity, posing challenges for patient management, treatment planning, and clinical trial stratification.
Methods: We developed a highly reproducible, personalized prognostication and clinical subgrouping system using machine learning (ML) on routine clinical data, MRI, and molecular measures from 2,838 demographically diverse patients across 22 institutions and 3 continents. Patients were stratified into favorable, intermediate, and poor prognostic subgroups (I, II, III) using Kaplan-Meier analysis (Cox proportional model and hazard ratios [HR]).
The development, application, and benchmarking of artificial intelligence (AI) tools to improve diagnosis, prognostication, and therapy in neuro-oncology are increasing at a rapid pace. This Policy Review provides an overview and critical assessment of the work to date in this field, focusing on diagnostic AI models of key genomic markers, predictive AI models of response before and after therapy, and differentiation of true disease progression from treatment-related changes, which is a considerable challenge based on current clinical care in neuro-oncology. Furthermore, promising future directions, including the use of AI for automated response assessment in neuro-oncology, are discussed.
View Article and Find Full Text PDFHead Neck
January 2025
Background: Immune-checkpoint inhibitors (ICIs) have showed unprecedent efficacy in the treatment of patients with advanced non-small cell lung cancer (NSCLC). However, not all patients manifest clinical benefit due to the lack of reliable predictive biomarkers. We showed preliminary data on the predictive role of the combination of radiomics and plasma extracellular vesicle (EV) PD-L1 to predict durable response to ICIs.
View Article and Find Full Text PDFBackground: Preoperative symptom severity in cervical spondylotic myelopathy (CSM) can be variable. Radiomic signatures could provide an imaging biomarker for symptom severity in CSM. This study utilizes radiomic signatures of T1-weighted and T2-weighted magnetic resonance imaging images to correlate with preoperative symptom severity based on modified Japanese Orthopaedic Association (mJOA) scores for patients with CSM.
View Article and Find Full Text PDFGlioblastoma (GBM) is fatal and the study of therapeutic resistance, disease progression, and drug discovery in GBM or glioma stem cells is often hindered by limited resources. This limitation slows down progress in both drug discovery and patient survival. Here we present a genetically engineered human cerebral organoid model with a cancer-like phenotype that could provide a basis for GBM-like models.
View Article and Find Full Text PDFPurpose: While the T2-FLAIR mismatch sign is highly specific for isocitrate dehydrogenase (IDH)-mutant, 1p/19q-noncodeleted astrocytomas among lower-grade gliomas, its utility in WHO grade 4 gliomas is not well-studied. We derived the partial T2-FLAIR mismatch sign as an imaging biomarker for IDH mutation in WHO grade 4 gliomas.
Methods: Preoperative MRI scans of adult WHO grade 4 glioma patients (n = 2165) from the multi-institutional ReSPOND (Radiomics Signatures for PrecisiON Diagnostics) consortium were analyzed.
Background: Treatment options for patients with melanoma brain metastasis (MBM) have changed significantly in the last decade. Few studies have evaluated changes in outcomes and factors associated with survival in MBM patients over time. The aim of this study is to evaluate changes in clinical features and overall survival (OS) for MBM patients.
View Article and Find Full Text PDFBackground: Immune-checkpoint inhibitors (ICIs) changed the therapeutic landscape of patients with lung cancer. However, only a subset of them derived clinical benefit and evidenced the need to identify reliable predictive biomarkers. Liquid biopsy is the non-invasive and repeatable analysis of biological material in body fluids and a promising tool for cancer biomarkers discovery.
View Article and Find Full Text PDFImmune therapeutics are revolutionizing cancer treatments. In tandem, new and confounding imaging characteristics have appeared that are distinct from those typically seen with conventional cytotoxic therapies. In fact, only 10% of patients on immunotherapy may show tumor shrinkage, typical of positive responses on conventional therapy.
View Article and Find Full Text PDFBackground: Malignant gliomas are deadly tumours with few therapeutic options. Although immunotherapy may be a promising therapeutic strategy for treating gliomas, a significant barrier is the CD11b tumour-associated myeloid cells (TAMCs), a heterogeneous glioma infiltrate comprising up to 40% of a glioma's cellular mass that inhibits anti-tumour T-cell function and promotes tumour progression. A theranostic approach uses a single molecule for targeted radiopharmaceutical therapy (TRT) and diagnostic imaging; however, there are few reports of theranostics targeting the tumour microenvironment.
View Article and Find Full Text PDFThe need to identify biomarkers to predict immunotherapy response for rare cancers has been long overdue. We aimed to study this in our paper, 'Radiomics analysis for predicting pembrolizumab response in patients with advanced rare cancers'. In this response to the Letter to the Editor by Cunha , we explain and discuss the reasons behind choosing LASSO (Least Absolute Shrinkage and Selection Operator) and XGBoost (eXtreme Gradient Boosting) with LOOCV (Leave-One-Out Cross-Validation) as the feature selection and classifier method, respectively for our radiomics models.
View Article and Find Full Text PDFLow-grade gliomas (LGGs) are tumors that affect mostly adults. These neoplasms are comprised mainly of oligodendrogliomas and diffuse astrocytomas. LGGs remain vexing to current management and therapeutic modalities although they exhibit more favorable survival rates compared with high-grade gliomas (HGGs).
View Article and Find Full Text PDFBackground: We present a radiomics-based model for predicting response to pembrolizumab in patients with advanced rare cancers.
Methods: The study included 57 patients with advanced rare cancers who were enrolled in our phase II clinical trial of pembrolizumab. Tumor response was evaluated using Response Evaluation Criteria in Solid Tumors (RECIST) 1.
Brain metastases are associated with poor survival. Molecular genetic testing informs on targeted therapy and survival. The purpose of this study was to perform a MR imaging-based radiomic analysis of brain metastases from non-small cell lung cancer (NSCLC) to identify radiomic features that were important for predicting survival duration.
View Article and Find Full Text PDFBackground: Glioblastoma (GBM) is the most common primary malignant brain tumor in adulthood. Despite multimodality treatments, including maximal safe resection followed by irradiation and chemotherapy, the median overall survival times range from 14 to 16 months. However, a small subset of GBM patients live beyond 5 years and are thus considered long-term survivors.
View Article and Find Full Text PDFSeveral studies underscore the potential of deep learning in identifying complex patterns, leading to diagnostic and prognostic biomarkers. Identifying sufficiently large and diverse datasets, required for training, is a significant challenge in medicine and can rarely be found in individual institutions. Multi-institutional collaborations based on centrally-shared patient data face privacy and ownership challenges.
View Article and Find Full Text PDFBackground: Task-based functional MRI (tb-fMRI) is a well-established technique used to identify eloquent cortex, but has limitations, particularly in cognitively impaired patients who cannot perform language paradigms. Resting-state functional MRI (rs-fMRI) is a potential alternative modality for presurgical mapping of language networks that does not require task performance. The purpose of our study is to determine the utility of rs-fMRI for clinical preoperative language mapping when tb-fMRI is limited.
View Article and Find Full Text PDFLung cancer can be classified into two main categories: small cell lung cancer (SCLC) and non-small cell lung cancer (NSCLC), which are different in treatment strategy and survival probability. The lung CT images of SCLC and NSCLC are similar such that their subtle differences are hardly visually discernible by the human eye through conventional imaging evaluation. We hypothesize that SCLC/NSCLC differentiation could be achieved via computerized image feature analysis and classification in feature space, as termed a radiomic model.
View Article and Find Full Text PDFImmune therapeutics are revolutionizing cancer treatments. In tandem, new and confounding imaging characteristics have appeared that are distinct from those typically seen with conventional cytotoxic therapies. In fact, only 10% of patients on immunotherapy may show tumor shrinkage, typical of positive responses on conventional therapy.
View Article and Find Full Text PDF