A formidable challenge for global change biologists is to predict how natural populations will respond to the emergence of conditions not observed at present, termed novel climates. Popular approaches to predict population vulnerability are based on the expected degree of novelty relative to the amplitude of historical climate fluctuations experienced by a population. Here, we argue that predictions focused on amplitude may be inaccurate because they ignore the predictability of environmental fluctuations in driving patterns of evolution and responses to climate change.
View Article and Find Full Text PDFHumans are changing the physical properties of Earth. In marine systems, elevated carbon dioxide concentrations are driving notable shifts in temperature and seawater chemistry. Here, we consider consequences of such perturbations for organism biomechanics and linkages amongst species within communities.
View Article and Find Full Text PDFAnthropogenically-forced changes in ocean chemistry at both the global and regional scale have the potential to negatively impact calcifying plankton, which play a key role in ecosystem functioning and marine carbon cycling. We cultured a globally important calcifying marine plankter (the foraminifer, Globigerina bulloides) under an ecologically relevant range of seawater pH (7.5 to 8.
View Article and Find Full Text PDFAnthropogenic emissions of carbon dioxide (CO2) are causing ocean acidification, lowering seawater aragonite (CaCO3) saturation state (Ω arag), with potentially substantial impacts on marine ecosystems over the 21(st) Century. Calcifying organisms have exhibited reduced calcification under lower saturation state conditions in aquaria. However, the in situ sensitivity of calcifying ecosystems to future ocean acidification remains unknown.
View Article and Find Full Text PDFAlthough there is a substantial body of work on how temperature shapes coastal marine ecosystems, the spatiotemporal variability of seawater pH and corresponding in situ biological responses remain largely unknown across biogeographic ranges of tropical coral species.Environmental variability is important to characterize because it can amplify or dampen the biological consequences of global change, depending on the functional relationship between mean temperature or pH and organismal traits. Here, we characterize the spatiotemporal variability of pH, temperature, and salinity at fringing reefs in Moorea, French Polynesia and Nanwan Bay, Taiwan using advanced time series analysis, including wavelet analysis, and infer their potential impact on the persistence and stability of coral populations.
View Article and Find Full Text PDFAlthough there is a substantial body of work on how temperature shapes coastal marine ecosystems, the spatiotemporal variability of seawater pH and corresponding in situ biological responses remain largely unknown across biogeographic ranges of tropical coral species. Environmental variability is important to characterize because it can amplify or dampen the biological consequences of global change, depending on the functional relationship between mean temperature or pH and organismal traits. Here, we characterize the spatiotemporal variability of pH, temperature, and salinity at fringing reefs in Moorea, French Polynesia and Nanwan Bay, Taiwan using advanced time series analysis, including wavelet analysis, and infer their potential impact on the persistence and stability of coral populations.
View Article and Find Full Text PDFOcean acidification and warming are expected to threaten the persistence of tropical coral reef ecosystems. As coral reefs face multiple stressors, the distribution and abundance of corals will depend on the successful dispersal and settlement of coral larvae under changing environmental conditions. To explore this scenario, we used metabolic rate, at holobiont and molecular levels, as an index for assessing the physiological plasticity of Pocillopora damicornis larvae from this site to conditions of ocean acidity and warming.
View Article and Find Full Text PDFThe Southern Ocean, a region that will be an ocean acidification hotspot in the near future, is home to a uniquely adapted fauna that includes a diversity of lightly-calcified invertebrates. We exposed the larvae of the echinoid Sterechinus neumayeri to environmental levels of CO(2) in McMurdo Sound (control: 410 µatm, Ω = 1.35) and mildly elevated pCO(2) levels, both near the level of the aragonite saturation horizon (510 µatm pCO(2), Ω = 1.
View Article and Find Full Text PDFThe sustainability of ecosystem services depends on a firm understanding of both how organisms provide these services to humans and how these organisms will be altered with a changing climate. Unquestionably a dominant feature of most ecosystems, invertebrates affect many ecosystem services and are also highly responsive to climate change. However, there is still a basic lack of understanding of the direct and indirect paths by which invertebrates influence ecosystem services, as well as how climate change will affect those ecosystem services by altering invertebrate populations.
View Article and Find Full Text PDFThe effect of Ocean Acidification (OA) on marine biota is quasi-predictable at best. While perturbation studies, in the form of incubations under elevated pCO(2), reveal sensitivities and responses of individual species, one missing link in the OA story results from a chronic lack of pH data specific to a given species' natural habitat. Here, we present a compilation of continuous, high-resolution time series of upper ocean pH, collected using autonomous sensors, over a variety of ecosystems ranging from polar to tropical, open-ocean to coastal, kelp forest to coral reef.
View Article and Find Full Text PDF