Publications by authors named "Rivera-Velez S"

D-Amino acids are regulatory molecules that affect biological processes. Therefore, being able to accurately detect and quantify these compounds is important for understanding their impact on nutrition and health. There is a paucity of information regarding D-amino acids in human milk.

View Article and Find Full Text PDF

Background: Foals that develop pulmonary ultrasonographic lesions on Rhodococcus equi (R. equi) endemic farms are treated with antibiotics because those at risk of developing clinical pneumonia (~20%) cannot be recognised early. Candidate biomarkers identified using metabolomics may aid targeted treatment strategies against R.

View Article and Find Full Text PDF

Metabolomics is the large-scale study of low-molecular-weight substances in a biological system in a given physiological state at a given time point. Metabolomics can be applied to identify predictors of inter-individual variability in drug response, provide clinicians with data useful for decision-making processes in drug selection, and inform about the pharmacokinetics and pharmacodynamics of a drug. It is, therefore, an exceptional approach for gaining new understanding effects in the field of comparative veterinary pharmacology.

View Article and Find Full Text PDF

Background: Many foals that develop thoracic ultrasonographic lesions as a result of Rhodococcus equi infection heal on their own. However, most of these foals receive antimicrobials because foals at risk of developing clinical pneumonia cannot be identified. Untargeted lipidomics is useful to identify candidate biomarkers.

View Article and Find Full Text PDF

Repeated administration of meloxicam to cats is often limited by the potential damage to multiple organ systems. Identifying molecules that predict the adverse effects of meloxicam would help to monitor and individualize its administration, maximizing meloxicam's beneficial effects. The objectives of this study were to (a) determine if the repeated administration of meloxicam to cats alters the plasma metabolome and (b) identify plasma metabolites that may serve to monitor during the administration of meloxicam in cats.

View Article and Find Full Text PDF

Prediction and early detection of kidney damage induced by nonsteroidal anti-inflammatories (NSAIDs) would provide the best chances of maximizing the anti-inflammatory effects while minimizing the risk of kidney damage. Unfortunately, biomarkers for detecting NSAID-induced kidney damage in cats remain to be discovered. To identify potential urinary biomarkers for monitoring NSAID-based treatments, we applied an untargeted metabolomics approach to urine collected from cats treated repeatedly with meloxicam or saline for up to 17 days.

View Article and Find Full Text PDF

Repeated administration of meloxicam can cause kidney damage in cats by mechanisms that remain unclear. Metabolomics and lipidomics are powerful, noninvasive approaches used to investigate tissue response to drug exposure. Thus, the objective of this study was to assess the effects of meloxicam on the feline kidney using untargeted metabolomics and lipidomics approaches.

View Article and Find Full Text PDF

Non-steroidal anti-inflammatories (NSAIDs), such as meloxicam, are the mainstay for treating painful and inflammatory conditions in animals and humans; however, the repeated administration of NSAIDs can cause adverse effects, limiting the long-term administration of these drugs to some patients. The primary aim of this study was to determine the effects of repeated meloxicam administration on the feline plasma and urine lipidome. Cats (n = 12) were treated subcutaneously with either saline solution or 0.

View Article and Find Full Text PDF

Dogs have been proposed as a translational model and used for studying aging, diabetes, and diabetes-related complications in humans. However, no studies have ever compared the glycation of plasma proteins between dogs and humans under similar experimental conditions. Thus, the aim of this study was to fill this gap by comparing the plasma protein glycation patterns of dogs and humans in an ex-vivo system.

View Article and Find Full Text PDF

OBJECTIVE To evaluate the plasma disposition of mycophenolic acid (MPA) and its derivatives MPA glucuronide and MPA glucoside after twice-daily infusions of mycophenolate mofetil (MMF) in healthy cats for 3 days and to assess the effect of MMF administration on peripheral blood mononuclear cell (PBMC) counts and CD4-to-CD8 ratios. ANIMALS 5 healthy adult cats. PROCEDURES MMF was administered to each cat (10 mg/kg, IV, q 12 h for 3 days).

View Article and Find Full Text PDF

Mycophenolic acid (MPA) has been shown to be promising for the treatment of autoimmune diseases in dogs and cats. In humans, MPA is highly bound to plasma proteins (~97%). It has been recommended to monitor free drug plasma concentrations because the free MPA correlates with its immunosuppressive effect.

View Article and Find Full Text PDF

Objectives This aim of this study was to characterize the composition and content of the feline urine metabolome. Methods Eight healthy domestic cats were acclimated at least 10 days before starting the study. Urine samples (~2 ml) were collected by ultrasound-guided cystocentesis.

View Article and Find Full Text PDF

Mycophenolic acid (MPA) is the active metabolite of the prodrug mycophenolate mofetil. In this study, we developed and validated a novel ultra-high performance liquid chromatography (UHPLC) method for the rapid quantification of MPA in plasma from dogs, cats and humans. Following the protein precipitation, calibration standards and quality controls were separated by UHPLC reversed-phase on a 1.

View Article and Find Full Text PDF

In recent years there has been considerable interest in carotenoids with respect to their biological roles in animals, microorganisms, and plants, in addition to their use in the chemical, cosmetics, food, pharmaceutical, poultry, and other industries. However, the structural diversity, the different range of concentration, and the presence of cis/trans-isomers complicate the identification of carotenoids. This review provides updated information on their physical and chemical properties as well as spectroscopic and chromatographic data for the unambiguous determination of carotenoids in biological samples.

View Article and Find Full Text PDF