The structural, vibrational, and electronic properties of new inorganic X-phosphide nanotubes (-XPNT), with X = Al, Ga, or In and chirality of (5,5), are investigated. These new NTs display ends, with the features induced by the nonpassivated ends. Studies are based on density functional theory (DFT) using the M06-2X, PBE, and B3LYP functionals together with the LanL2DZ basis set.
View Article and Find Full Text PDFExploring Heusler based materials for different practical applications has drawn more and more attention. In this work, the structural, electronic, magnetic, and mechanical properties of NaTMGe (TM = all 3d transition metals) half-Heusler compounds have been systematically investigated using first-principles calculations. The TM modification plays a determinant role in the fundamental properties.
View Article and Find Full Text PDFSince the successful synthesis of the MoSSe monolayer, two-dimensional (2D) Janus materials have attracted huge attention from researchers. In this work, the MoSO monolayer with tunable electronic and magnetic properties is comprehensively investigated using first-principles calculations based on density functional theory (DFT). The pristine MoSO single layer is an indirect gap semiconductor with energy gap of 1.
View Article and Find Full Text PDFExploration of new half-metallic materials for spintronic applications has drawn great attention from researchers. In this work, we investigate the structural, electronic, and magnetic properties of the NaMgO perovskite in the bulk and (001) surface conformations. The results show the half-metallic nature of bulk NaMgO generated by insulator spin-up channels with a large band gap of 6.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
February 2022
The luminescent properties of tryptophan in solvents less polar than water, such as acetone, and non-polar ones, such as cyclohexane, are experimentally studied and compared with theoretical calculations using time-dependent density functional theory (TD-DFT) methods. Since tryptophan may present different configurations and charge distributions, the most stable conformer is analyzed for both solvents, including its neutral and zwitterionic forms. To perform the simulation two clusters are proposed with the Zpt conformer in acetone: [Formula: see text] and [Formula: see text] , and four clusters with the Nag conformer in cyclohexane: (Trp)-(CH), (Trp)-(CH), (Trp)-(CH) and (Trp)-(CH), in order to conveniently emulate the concentration in each solvent by reducing the distance between adjacent tryptophan molecules as the concentration increases, since there is no control over the volume parameter.
View Article and Find Full Text PDFBased on density functional theory (DFT) and the semiempirical method PM7, we analyze the encapsulation process of polluting gases and/or their adsorption on different sites, viz., on the inner wall, the outer wall, and on the boron nitride (BN) nanotube ends, with chirality (7,7) armchair. DFT calculations are performed using the Perdew-Burke-Ernzerhof (PBE) functional and the M06-2X method through the 6-31G(d) divided valence orbitals as an atomic basis.
View Article and Find Full Text PDFIn practice, modifying the fundamental properties of low-dimensional materials should be realized before incorporating them into nanoscale devices. In this paper, we systematically investigate the nitrogen (N) doping and oxygen vacancy (OV) effects on the electronic and magnetic properties of the beryllium oxide (BeO) monolayer using first-principles calculations. Pristine BeO single layer is a non-magnetic insulator with an indirect-Γ gap of 5.
View Article and Find Full Text PDFIt is known that high spin-polarization and magnetism can be found even in materials with neither transition metals nor rare earths. In this paper, we report results of the structural design, electronic structure, magnetic and optical properties of new equiatomic quaternary Heusler (EQH) KCaBX (X = S and Se) compounds. Electron exchangecorrelation interactions are described by the Wu-Cohen (WC) functional and Tran-Blaha modified Becke-Johnson exchange (mBJ) potential.
View Article and Find Full Text PDFIn this work, a new equiatomic quaternary Heusler (EQH) compound, MnVZrP, is predicted using first principles calculations. Simulations show the good stability of the material, suggesting experimental realization. Results show that MnVZrP is a magnetic semiconductor material, exhibiting semiconductor characteristics in both spin channels, however, with strong spin-polarization.
View Article and Find Full Text PDFThe valence and conduction band offsets for both polar and nonpolar CuGaS/CuAlSe and CuGaS/ZnSe interfaces were studied here by the state-of-the-art first-principles calculations. Using the hybrid functional calculations, we show that the CuGaS/CuAlSe and CuGaS/ZnSe heterostructures in all interfaces form type II band alignment. The difference of valence and conduction band offsets is mainly due to lattice mismatch, generating stress in the interface and affecting the electronic properties of each material; meanwhile, the polarity configuration does not play an important role in these values.
View Article and Find Full Text PDFIn this work two high density functional theory (DFT) correlation methodologies, the so called DFT+U (or GGA+U) implementation and the exact exchange of correlated electrons (EECE), hybrid DFT functional (or one case of hybrid DFT), are tested to determine the mechanical properties of americium-II. For each case, the numeric value of their principal parameter is chosen ([Formula: see text] for the first case and [Formula: see text] for the second one) once the crystalline structure meets all the mechanical stability conditions. The results show that there is a range of values of [Formula: see text] and [Formula: see text] in which both methodologies generate a stable (experimentally correct) non-magnetic ground state, reaching approximately the same numeric value of the set of elastic constants of the cubic structure.
View Article and Find Full Text PDFClassical molecular dynamics (MD) and density functional theory (DFT) calculations are developed to investigate the dopamine and caffeine encapsulation within boron nitride (BN) nanotubes (NT) with (14,0) chirality. Classical MD studies are done at canonical and isobaric-isothermal conditions at 298 K and 1 bar in explicit water. Results reveal that both molecules are attracted by the nanotube; however, only dopamine is able to enter the nanotube, whereas caffeine moves in its vicinity, suggesting that both species can be transported: the first by encapsulation and the second by drag.
View Article and Find Full Text PDFThe water confined within a surfactant bilayer is studied using different water models via molecular dynamics simulations. We considered four representative rigid models of water: the SPC/E and the TIP4P/2005, which are commonly used in numerical calculations and the more recent TIP4Q and SPC/ε models, developed to reproduce the dielectric behaviour of pure water. The static dielectric constant of the confined water was analyzed as a function of the temperature for the four models.
View Article and Find Full Text PDFJ Phys Condens Matter
April 2017
Alkali and alkali-earth metal hydrides have high volumetric and gravimetric hydrogen densities, but due to their high thermodynamic stability, they possess high dehydrogenation temperatures which may be reduced by transforming these compounds into less stable states/configurations. We present a systematic computational study of the electron doping effects on the stability of the alkali metal hydride NaH substituted with Mg, using the self-consistent version of the virtual crystal approximation to model the alloy Na Mg H. The phonon dispersions were studied paying special attention to the crystal stability and the correlations with the electronic structure taking into account the zero point energy contribution.
View Article and Find Full Text PDFThe mechanism of complex formation of two oppositely charged linear polyelectrolytes dispersed in a solvent is investigated by using dissipative particle dynamics (DPD) simulation. In the polyelectrolyte solution, the size of the cationic polyelectrolyte remains constant while the size of the anionic chain increases. We analyze the influence of the anionic polyelectrolyte size and salt effect (ionic strength) on the conformational changes of the chains during complex formation.
View Article and Find Full Text PDFResults about stability, electronic structure and characteristic electronic properties are reported for cluster structures based on icosahedra structure with a composition of Ti12X (X = Li to Xe) within the generalized gradient approximation of the density functional theory. It is demonstrated that several elements allow an improvement on the stability of Ti13 by a doping process where the central atoms is substituted. C, Si, P, Co, Ge, Ru and Te lead to the largest gain in energy, while the HOMO-LUMO maximum gap distinguishes to just C, Si, P and Te as the most probable to be found in experimental samples.
View Article and Find Full Text PDFWe present a detailed structural analysis for small Tin (n = 2-15) clusters based on ab initio quantum mechanical calculations of their binding energies, frontier orbital gaps, and second energy derivatives. Local density approximation calculations revealed that while the smaller clusters (n < or = 8) prefer hexagonal atomic arrays with bulklike crystal symmetry, the bigger clusters prefer pentagonal atomic arrays. From the stability criteria of the magic number clusters we could identify three magic number clusters Ti7, Ti13, and Ti15.
View Article and Find Full Text PDFCalculation including the electron correlation effects is reported for the ground 1 1S and lowest triplet 1 3S state energies of the confined helium atom placed at the center of an impenetrable spherical box. While the adopted wave-functional treatment involves optimization of three nonlinear parameters and 10, 20, and 40 linear coefficients contained in wave functions expressed in a generalized Hylleraas basis set that explicitly incorporates the interelectronic distance r12, via a Slater-type exponent and through polynomial terms entering the expansion, the Kohn-Sham model employed here uses the Perdew and Wang exchange-correlation functional in its spin-polarized version within the local-density approximation (LDA) with and without the self-interaction correction. All these calculations predict a systematic increase in the singlet-triplet energy splitting toward the high confinement regime, i.
View Article and Find Full Text PDF