Phase separation in thin film blends of poly(tert-butyl acrylate) (PtBA) and a polyhedral oligomeric silsesquioxane (POSS), trisilanolphenyl-POSS (TPP), is studied as functions of annealing temperature and time, using reflected light optical microscopy, atomic force microscopy, and X-ray photoelectron spectroscopy. The results demonstrate that the PtBA/TPP blend system confined to thin films ( approximately 90 nm) exhibits lower critical solution temperature (LCST) behavior with a critical temperature of approximately 70 degrees C and a critical composition of 60 wt % PtBA with insignificant dewetting at the phase boundary. Off-critical spinodal behavior is observed for 58 and 62 wt % PtBA blend films.
View Article and Find Full Text PDFMorphological evolution in dewetting thin film bilayers of polystyrene (PS) and a polyhedral oligomeric silsesquioxane (POSS), trisilanolphenyl-POSS (TPP), was studied as a function of annealing temperature and annealing time. The results demonstrate unique dewetting morphologies in PS/TPP bilayers at elevated temperatures that are significantly different from those typically observed in dewetting polymer/polymer bilayers. During temperature ramp studies by optical microscopy (OM) in the reflection mode, PS/TPP bilayers form cracks with a weak optical contrast at approximately 130 degrees C.
View Article and Find Full Text PDFThe surface morphology of dewetting poly(tert-butyl acrylate) (PtBA) and trisilanolphenyl-POSS (TPP) bilayers has been studied as a function of time at 95 degrees C. For short annealing times, only the upper nanoparticle (TPP) layer dewets from the underlying PtBA layer. The number and lateral dimensions of the holes in the upper TPP layer increase with increasing annealing times, forming interconnected rim structures.
View Article and Find Full Text PDF