Publications by authors named "Ritu Shekhar"

Kaposi's sarcoma-associated herpesvirus is the etiologic agent of Kaposi's sarcoma and two B-cell malignancies. Recent advancements in sequencing technologies have led to high resolution transcriptomes for several human herpesviruses that densely encode genes on both strands. However, for KSHV progress remained limited due to the overall low percentage of KSHV transcripts, even during lytic replication.

View Article and Find Full Text PDF

Understanding the antibody response to SARS-CoV-2, the virus responsible for COVID-19, is crucial to comprehending disease progression and the significance of vaccine and therapeutic development. The emergence of highly contagious variants poses a significant challenge to humoral immunity, underscoring the necessity of grasping the intricacies of specific antibodies. This review emphasizes the pivotal role of antibodies in shaping immune responses and their implications for diagnosing, preventing, and treating SARS-CoV-2 infection.

View Article and Find Full Text PDF

MicroRNAs (miRNAs) are increasingly recognized as central players in the regulation of eukaryotic physiological processes. These small double stranded RNA molecules have emerged as pivotal regulators in the intricate network of cellular signaling pathways, playing significant roles in the development and progression of human cancers. The central theme in miRNA-mediated regulation of signaling pathways involves their ability to target and modulate the expression of pathway components.

View Article and Find Full Text PDF

Kaposi's sarcoma-associated herpesvirus (KSHV) is an oncogenic gammaherpesvirus that is the causative agent of primary effusion lymphoma and Kaposi's sarcoma. In healthy carriers, KSHV remains latent, but a compromised immune system can lead to lytic viral replication that increases the probability of tumorigenesis. RIG-I-like receptors (RLRs) are members of the DExD/H box helicase family of RNA binding proteins that recognize KSHV to stimulate the immune system and prevent reactivation from latency.

View Article and Find Full Text PDF

MicroRNAs of the miR-16 and miR-34 families have been reported to inhibit cell cycle progression, and their loss has been linked to oncogenic transformation. Utilizing a high-throughput, genome-wide screen for miRNAs and mRNAs that are differentially regulated in osteosarcoma (OS) cell lines, we report that miR-449a and miR-424, belonging to the miR-34 and miR-16 families, respectively, target the major S/G phase cyclin, cyclin A2 (), in a bipartite manner. We found that the 3'-UTR of is recognized by miR-449a, whereas the coding region is targeted by miR-424.

View Article and Find Full Text PDF

The tumor microenvironment is characterized by nutrient-deprived conditions in which the cancer cells have to adapt for survival. Serum starvation resembles the growth factor deprivation characteristic of the poorly vascularized tumor microenvironment and has aided in the discovery of key growth regulatory genes and microRNAs (miRNAs) that have a role in the oncogenic transformation. We report here that miR-874 down-regulates the major G/S phase cyclin, cyclin E1 (CCNE1), during serum starvation.

View Article and Find Full Text PDF

The primary eukaryotic single-stranded DNA-binding protein, Replication protein A (RPA), binds to single-stranded DNA at the sites of DNA damage and recruits the apical checkpoint kinase, ATR via its partner protein, ATRIP. It has been demonstrated that absence of RPA incapacitates the ATR-mediated checkpoint response. We report that in the absence of RPA, human single-stranded DNA-binding protein 1 (hSSB1) and its partner protein INTS3 form sub-nuclear foci, associate with the ATR-ATRIP complex and recruit it to the sites of genomic stress.

View Article and Find Full Text PDF