Introduction: Plasmodium falciparum synthesizes phosphatidylcholine for the membrane development through serine decarboxylase-phosphoethanolamine methyltransferase pathway for growth in human host. Phosphoethanolamine-methyltransferase (PfPMT) is a crucial enzyme for the synthesis of phosphocholine which is a precursor for phosphatidylcholine synthesis and is considered as a pivotal drug target as it is absent in the host. The inhibition of PfPMT may kill malaria parasite and hence is being considered as potential target for rational antimalarial drug designing.
View Article and Find Full Text PDFBackground & Objectives: Plasmodium parasite harbours unique methylerythritol phosphate (MEP) pathway which is obligatory for the biosynthesis of isoprenoids. In malaria parasites, the isoprenoids are indispensable during hepatic, erythrocytic and gametocytic stages. Owing to the criticality of MEP pathway and the potential of its enzymes to act as antimalarial drug target, this study comprehensively investigated the genetic diversity and structural composition of 4-diphosphocytidyl-2C-methyl-D-erythritol kinase (IspE), fourth enzyme of MEP pathway in Indian Plasmodium falciparum (PfIspE).
View Article and Find Full Text PDFBackground & Objectives: Salivary gland proteins play a pivotal role in blood feeding, epithelial interactions, and parasite transmission in mosquito vectors. Anopheles culicifacies is a complex of five sibling species, viz. A, B, C, D, and E, with diverse geographical distribution patterns.
View Article and Find Full Text PDFBackground: Midgut invasion, a major bottleneck for malaria parasites transmission is considered as a potential target for vector-parasite interaction studies. New intervention strategies are required to explore the midgut proteins and their potential role in refractoriness for malaria control in Anopheles mosquitoes. To better understand the midgut functional proteins of An.
View Article and Find Full Text PDFMalaria parasites utilize Methylerythritol phosphate (MEP) pathway for synthesis of isoprenoid precursors which are essential for maturation and survival of parasites during erythrocytic and gametocytic stages. The absence of MEP pathway in the human host establishes MEP pathway enzymes as a repertoire of essential drug targets. The fourth enzyme, 4-diphosphocytidyl-2C-methyl-d-erythritol kinase (IspE) has been proved essential in pathogenic bacteria, however; it has not yet been studied in any Plasmodium species.
View Article and Find Full Text PDFIn order to understand the importance of functional proteins in mosquito behavior, following blood meal, a baseline proteomic dataset is essential for providing insights into the physiology of blood feeding. Therefore, in this study as first step, in solution and 1-D electrophoresis digestion approach combined with tandem mass spectrometry (nano LC-MS/MS) and computational bioinformatics for data mining was used to prepare a baseline proteomic catalogue of salivary gland proteins of sugar fed An. culicifacies mosquitoes.
View Article and Find Full Text PDFVector control is one of the major global strategies for control of malaria. However, the major obstacle for vector control is the development of multiple resistances to organochlorine, organophosphorus insecticides and pyrethroids that are currently being used in public health for spraying and in bednets. Salivary glands of vectors are the first target organ for human-vector contact during biting and parasite-vector contact prior to parasite development in the mosquito midguts.
View Article and Find Full Text PDF