Publications by authors named "Ritu Jaiswal"

Intercellular communication is a normal feature of most physiological interactions between cells in healthy organisms. While cells communicate directly through intimate physiology contact, other mechanisms of communication exist, such as through the influence of soluble mediators such as growth factors, cytokines and chemokines. There is, however, yet another mechanism of intercellular communication that permits the exchange of information between cells through extracellular vesicles (EVs).

View Article and Find Full Text PDF

Background: Breast cancer is the most frequently diagnosed cancer in women. Resident macrophages at distant sites provide a highly responsive and immunologically dynamic innate immune response against foreign infiltrates. Despite extensive characterization of the role of macrophages and other immune cells in malignant tissues, there is very little known about the mechanisms which facilitate metastatic breast cancer spread to distant sites of immunological integrity.

View Article and Find Full Text PDF

Background: Multidrug resistance in cancer (MDR) occurs when tumours become crossresistant to a range of different anticancer agents. One mechanism by which MDR can be acquired is through cell to cell communication pathways. Membrane-derived microparticles (MPs) are emerging as important signaling molecules in this process.

View Article and Find Full Text PDF

Multiple myeloma (MM) is a mature B cell neoplasm that results in multi-organ failure. The median age of onset, diverse clinical manifestations, heterogeneous survival rate, clonal evolution, intrinsic and acquired drug resistance have impact on the therapeutic management of the disease. Specifically, the emergence of multidrug resistance (MDR) during the course of treatment contributes significantly to treatment failure.

View Article and Find Full Text PDF

Multidrug resistance (MDR) is often attributed to the over-expression of P-glycoprotein (P-gp), which prevents the accumulation of anticancer drugs within cells by virtue of its active drug efflux capacity. We have previously described the intercellular transfer of P-gp via extracellular vesicles (EVs) and proposed the involvement of a unique protein complex in regulating this process. In this paper, we investigate the role of these mediators in the regulation of P-gp functionality and hence the acquisition of MDR following cell to cell transfer.

View Article and Find Full Text PDF

Once thought of as inert remnants of cellular processes, the significance of membrane vesicles is now expanding as their capacity to package and transfer bioactive molecules during intercellular communication is established. This ability to serve as vectors in the trafficking of cellular cargo is of mounting interest in the context of cancer, particularly in the dissemination of deleterious cancer traits from donor cells to recipient cells. Although microparticles (MPs) contribute to the pathogenesis of cancer, their unique characteristics can also be exploited in the context of cancer management.

View Article and Find Full Text PDF

The successful treatment of cancer is hampered by drug resistance and metastasis. While these two obstacles were once considered separately, recent evidence associates resistance with an enhanced metastatic capacity. However, the underlying mechanisms remain undefined.

View Article and Find Full Text PDF

Multidrug resistance (MDR) continues to be a major impediment to the successful treatment of cancer. The two efflux transporters, P-glycoprotein (P-gp) and MRP1 are major contributors to cancer MDR clinically. The upregulation of P-gp leading to MDR was initially understood to occur via pre- and post-transcriptional mechanisms only.

View Article and Find Full Text PDF

Expanding on our previous findings demonstrating that microparticles (MPs) spread cancer multidrug resistance, we now show that MPs sequester drugs, reducing the free drug concentration available to cells. MPs were isolated from drug-sensitive and drug-resistant sub-clones of a human breast adenocarcinoma cell line and from human acute lymphoblastic leukemia cells. MPs were assessed for size, mitochondria, RNA and phospholipid content, P-glycoprotein (P-gp) expression and orientation and ATPase activity relative to drug sequestration capacity.

View Article and Find Full Text PDF

Multidrug resistance (MDR) is a major impediment to the overall success of chemotherapy in clinical oncology. MDR has been primarily attributed by the ATP-dependent transmembrane proteins, P-glycoprotein (P-gp, ABCB1) and Multidrug Resistance-Associated Protein 1 (MRP1, ABCC1). These proteins maintain sublethal concentrations of intracellular chemotherapeutics by virtue of their drug efflux capacity.

View Article and Find Full Text PDF

Microparticles (MPs) play a vital role in cell communication by facilitating the horizontal transfer of cargo between cells. Recently, we described a novel "non-genetic" mechanism for the acquisition of multidrug resistance (MDR) in cancer cells by intercellular transfer of functional P-gp, via MPs. MDR is caused by the overexpression of the efflux transporters P-glycoprotein (P-gp) and Multidrug Resistance-Associated Protein 1 (MRP1).

View Article and Find Full Text PDF

Background: Microparticles (MPs) are membrane vesicles which are released from normal and malignant cells following a process of budding and detachment from donor cells. MPs contain surface antigens, proteins and genetic material and serve as vectors of intercellular communication. MPs comprise the major source of systemic RNA including microRNA (miRNA), the aberrant expression of which appears to be associated with stage, progression and spread of many cancers.

View Article and Find Full Text PDF

Drug resistance is a major cause of cancer treatment failure, with multidrug resistance (MDR) being the most serious, whereby cancer cells display cross-resistance to structurally and functionally unrelated drugs. MDR is caused by overexpression of the efflux transporters P-glycoprotein (P-gp) and multidrug resistance-associated protein 1 (MRP1). These transporters act to maintain sublethal intracellular drug concentrations within the cancer cell, making the population treatment unresponsive.

View Article and Find Full Text PDF

Background: Although standard protocols for the study of drug delivery in the upper airways using the sub-bronchial epithelial cell line Calu-3 model, particularly that of the air-liquid interface configuration, are readily available, the model remains un-validated with respect to culture conditions, barrier integrity, mucous secretion, and transporter function. With respect to the latter, the significance of functional P-glycoprotein (P-gp) activity in Calu-3 cells has recently been questioned, despite previous reports demonstrating a significant contribution by the same transporter in limiting drug uptake across the pulmonary epithelium. Therefore, the aim of this study was the standardization of this model as a tool for drug discovery.

View Article and Find Full Text PDF