Vestibular hair cells transduce mechanical displacements of their hair bundles into an electrical receptor potential which modulates transmitter release and subsequent action potential firing in afferent neurons. To probe ionic mechanisms underlying sensory coding in vestibular calyces, we used the whole-cell patch-clamp technique to record action potentials and K(+) currents from afferent calyx terminals isolated from the semicircular canals of Mongolian gerbils. Calyx terminals showed minimal current at the mean zero-current potential (-60 mV), but two types of outward K(+) currents were identified at potentials above -50 mV.
View Article and Find Full Text PDFA 26 residue peptide (Am 2766) with the sequence CKQAGESCDIFSQNCCVG-TCAFICIE-NH(2) has been isolated and purified from the venom of the molluscivorous snail, Conus amadis, collected off the southeastern coast of India. Chemical modification and mass spectrometric studies establish that Am 2766 has three disulfide bridges. C-terminal amidation has been demonstrated by mass measurements on the C-terminal fragments obtained by proteolysis.
View Article and Find Full Text PDFA novel inhibitor of voltage-gated potassium channel was isolated and purified to homogeneity from the venom of the red scorpion Buthus tamulus. The primary sequence of this toxin, named BTK-2, as determined by peptide sequencing shows that it has 32 amino acid residues with six conserved cysteines. The molecular weight of the toxin was found to be 3452 Da.
View Article and Find Full Text PDFA short chain peptide has been isolated from the venom of a red scorpion of Indian origin, Buthus tamulus. This peptide was purified using ion exchange and reverse phase chromatography and was characterized by molecular weight determination and amino acid sequence. The primary structure analysis shows that BtITx3 is a short peptide of 35 amino acid residues having a molecular weight of 3796 Da.
View Article and Find Full Text PDF