Publications by authors named "Ritu Das"

Article Synopsis
  • Contact lenses equipped with electro-chemical sensors provide a non-invasive way to monitor blood biomarkers, but their rigid components cause discomfort and inaccuracies in readings.
  • A new flexible, paper-based contact lens design allows for colorimetric glucose analysis, utilizing a 3D printing method that simplifies production and reduces reliance on cleanroom technology.
  • The innovative microfluidic system in the lens can detect glucose concentrations as low as 2 mM within 10 seconds, demonstrating effective glucose monitoring for diabetic patients.
View Article and Find Full Text PDF

This review examines the recent advancements in transparent electrodes and their crucial role in multimodal sensing technologies. Transparent electrodes, notable for their optical transparency and electrical conductivity, are revolutionizing sensors by enabling the simultaneous detection of diverse physical, chemical, and biological signals. Materials like graphene, carbon nanotubes, and conductive polymers, which offer a balance between optical transparency, electrical conductivity, and mechanical flexibility, are at the forefront of this development.

View Article and Find Full Text PDF

Objectives: The objectives of this study are to construct the high definition phenotype (HDP), a novel time-series data structure composed of both primary and derived parameters, using heterogeneous clinical sources and to determine whether different predictive models can utilize the HDP in the neonatal intensive care unit (NICU) to improve neonatal mortality prediction in clinical settings.

Materials And Methods: A total of 49 primary data parameters were collected from July 2018 to May 2020 from eight level-III NICUs. From a total of 1546 patients, 757 patients were found to contain sufficient fixed, intermittent, and continuous data to create HDPs.

View Article and Find Full Text PDF

Increased length of stay (LOS) in intensive care units is directly associated with the financial burden, anxiety, and increased mortality risks. In the current study, we have incorporated the association of day-to-day nutrition and medication data of the patient during its stay in hospital with its predicted LOS. To demonstrate the same, we developed a model to predict the LOS using risk factors (a) perinatal and antenatal details, (b) deviation of nutrition and medication dosage from guidelines, and (c) clinical diagnoses encountered during NICU stay.

View Article and Find Full Text PDF

Our objective in this study was to determine if machine learning (ML) can automatically recognize neonatal manipulations, along with associated changes in physiological parameters. A retrospective observational study was carried out in two Neonatal Intensive Care Units (NICUs) between December 2019 to April 2020. Both the video and physiological data (heart rate (HR) and oxygen saturation (SpO)) were captured during NICU hospitalization.

View Article and Find Full Text PDF

Background: Critical care units (CCUs) with extensive use of various monitoring devices generate massive data. To utilize the valuable information of these devices; data are collected and stored using systems like clinical information system and laboratory information management system. These systems are proprietary, allow limited access to their database and, have the vendor-specific clinical implementation.

View Article and Find Full Text PDF

Cost effective and miniaturized methods aiming for high throughput monitoring of bacterial growth are of great significance, especially for tracking disease progression in early stage as well as in screening antibiotic resistant species. Here, we demonstrate an electrochemical platform for noninvasive monitoring of bacterial growth by encapsulating bacterial cells and carbon nanodots in alginate microspheres. The synthesized carbon nanodots have been explored for electrochemical properties, and its redox properties have been utilized for developing bacterial growth monitoring platform.

View Article and Find Full Text PDF

Background: Tuberculous meningitis (TBM) is the most devastating manifestation of extra-pulmonary tuberculosis. About 33% of TBM patients die due to very late diagnosis of the disease. Conventional diagnostic methods based on signs and symptoms, cerebrospinal fluid (CSF) smear microscopy or liquid culture suffer from either poor sensitivity or long turnaround time (up to 8 weeks).

View Article and Find Full Text PDF

Despite of various advancements in biosensing, a rapid, accurate, and on-site detection of a bacterial pathogen is a real challenge due to the lack of appropriate diagnostic platforms. To address this unmet need, we herein report an aptamer-mediated tunable NanoZyme sensor for the detection of Pseudomonas aeruginosa, an infectious bacterial pathogen. Our approach exploits the inherent peroxidase-like NanoZyme activity of gold nanoparticles (GNPs) in combination with high affinity and specificity of a Pseudomonas aeruginosa-specific aptamer (F23).

View Article and Find Full Text PDF

Pulmonary tuberculosis is the most common manifestation of tuberculosis, and to this day, sputum smear microscopy remains the most widely used diagnostic test in resource-limited settings despite its suboptimal sensitivity. Here we report the development of two DNA aptamer-based diagnostic tests, namely aptamer linked immobilized sorbent assay (Aptamer ALISA) and electrochemical sensor (ECS), for the direct detection of a TB biomarker HspX in sputum. First we compared the performance of Aptamer ALISA with anti-HspX polyclonal antibody-based enzyme linked immunosorbent assay (Antibody ELISA) in a blinded study of 314 sputum specimens.

View Article and Find Full Text PDF

A limit of detection of 200 CFU/mL of spiked in various sample matrices were achieved in 30 min. The sample matrices were raw/unprocessed milk, commercially available milk, juice from packed bottles, fresh juice from carts, potable water, turbid water and calf serum. The complete protocol comprised of three steps: (a) cell lysis (b) nucleic acid amplification and (c) an in situ optical detection.

View Article and Find Full Text PDF

We report the DNA probe functionalized electrochemical genosensor for the detection of Bacillus anthracis, specific towards the regulatory gene atxA. The DNA sensor is fabricated on electrochemically deposited gold nanoparticle on self assembled layer of (3-Mercaptopropyl) trimethoxysilane (MPTS) on GC electrode. DNA hybridization is monitored by differential pulse voltammogram (DPV).

View Article and Find Full Text PDF

In this work, we fabricated a system of integrated self-assembled layer of organosilane 3-mercaptopropyltrimethoxy silane (MPTS) on the screen printed electrode (SPE) and electrochemically deposited gold nanoparticle for Salmonella typhi detection employing Vi gene as a molecular marker. Thiolated DNA probe was immobilized on a gold nanoparticle (AuNP) modified SPE for DNA hybridization assay using methylene blue as redox (electroactive) hybridization indicator, and signal was monitored by differential pulse voltammetry (DPV) method. The modified SPE was characterized by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and atomic force microscopy (AFM) method.

View Article and Find Full Text PDF