Biofouling is the undesirable accumulation of living organisms and their metabolites on submerged surfaces. Biofouling begins with adhesion of biomacromolecules and/or microorganisms and can lead to the subsequent formation of biofilms that are predominantly regulated by chemical signals, such as cyclic dinucleotides and quorum-sensing molecules. Biofilms typically release chemical cues that recruit or repel other invertebrate larvae and algal spores.
View Article and Find Full Text PDFBarnacles are the only sessile lineages among crustaceans, and their sessile life begins with the settlement of swimming larvae (cyprids) and the formation of protective shells. These processes are crucial for adaptation to a sessile lifestyle, but the underlying molecular mechanisms remain poorly understood. While investigating these mechanisms in the acorn barnacle, Amphibalanus amphitrite, we discovered a new gene, bcs-6, which is involved in the energy metabolism of cyprid settlement and originated from a transposon by acquiring the promoter and cis-regulatory element.
View Article and Find Full Text PDFBiofouling is the growth of organisms on wet surfaces. Biofouling includes micro- (bacteria and unicellular algae) and macrofouling (mussels, barnacles, tube worms, bryozoans, etc.) and is a major problem for industries.
View Article and Find Full Text PDFThe biofouling process refers to the undesirable accumulation of micro- and macro-organisms on manufactured surfaces [...
View Article and Find Full Text PDFThe biological impact of chemical formulations used in various coating applications is essential in guiding the development of new materials that directly contact living organisms. To illustrate this point, an investigation addressing the impact of chemical compositions of polydimethylsiloxane networks on a common platform for foul-release biofouling management coatings was conducted. The acute toxicity of network components to barnacle larvae, the impacts of aqueous extracts of crosslinker, silicones and organometallic catalyst on trypsin enzymatic activity, and the impact of assembled networks on barnacle adhesion was evaluated.
View Article and Find Full Text PDFPlastic pollution has caused significant environmental and health challenges. Corporations that contribute to the make, use, and distribution of plastics can play a vital role in addressing global plastic pollution and many are committing to voluntary pledges. However, the extent to which corporation voluntary commitments are helping solve the problem remains underexplored.
View Article and Find Full Text PDFOccurrence of microplastics (MPs) in freshwater environments, particularly reservoir and lakes, is an emerging concern. There are limited studies in Pakistan on microplastic pollution in the lacustrine environments and those that exist do not provide sufficient information on the spatial distribution of MPs in offshore surface water. The aims of this study were to determine microplastic abundance in Rawal Lake, Pakistan and to ascertain if sampling methodology influences microplastic counts.
View Article and Find Full Text PDFThis study evaluates the toxicity of pristine (Unwashed) and aged, clean (Biofilm-) or fouled (Biofilm+), PS microspheres (3 µm,10 µm), using Washed particles as a reference material, on selective and continuous larval culture of Amphibalanus amphitrite. Exposure to 3 µm Unwashed and Biofilm+ particles for 24 h induced significant mortality (60 % and 57 % respectively) in stage II larvae. Stage II and VI nauplii showed greater uptake of 3 µm Biofilm- particles.
View Article and Find Full Text PDFBiofouling has great environmental, economic, and societal impacts. Emerging and promising strategies for antibiofouling require incorporation of sustainability concepts. To this end, key research priorities should be given to disrupting attachment of organisms or engineering innovative surfaces to slough off fouling organisms from the surfaces, with more holistic considerations of other viable options, including eco-friendly antifouling chemicals.
View Article and Find Full Text PDFBarnacles are ancient arthropods that, as adults, are surrounded by a hard, mineralized, outer shell that the organism produces for protection. While extensive research has been conducted on the glue-like cement that barnacles use to adhere to surfaces, less is known about the barnacle exoskeleton, especially the process by which the barnacle exoskeleton is formed. Here, we present data exploring the changes that occur as the barnacle cyprid undergoes metamorphosis to become a sessile juvenile with a mineralized exoskeleton.
View Article and Find Full Text PDFAs plastic waste accumulates in the ocean at alarming rates, the need for efficient and sustainable remediation solutions is urgent. One solution is the development and mobilization of technologies that either 1)prevent plastics from entering waterways or2) collect marine and riverineplastic pollution. To date, however, few reports have focused on these technologies, and information on various technological developments is scattered.
View Article and Find Full Text PDFMultiple mechanisms for plastic consumption by marine animals have been proposed based on the feeding cues and behavior of the animal studied. We investigated plastic consumption in sea anemones. We found that anemones readily consumed pristine National Institute of Standards and Technology low-density polyethylene and high-density polyethylene II and III pre-production pellets.
View Article and Find Full Text PDFMarine biofilms are composed of many species of bacteria, unicellular algae, and protozoa. Biofilms can induce, inhibit, or have no effect on settlement of larvae and spores of algae. In this review, we focus on induction of larval settlement by marine bacteria and unicellular eukaryotes and review publications from 2010 to September 2019.
View Article and Find Full Text PDFFish studies report consumption of microplastics (MPs) in the field, and concern exists over associated risks. However, laboratory studies with adult fish are scarce. In this study, outbred and see-through Japanese medaka (Oryzias latipes) were fed diets amended with 500, 1000, or 2000 μg/g 10 μm fluorescent spherical polystyrene microplastics (MPs) for 10 weeks during their maturation from juveniles to spawning adults.
View Article and Find Full Text PDFNext generation sequencing (NGS) technologies can provide an understanding of the molecular processes involved in marine fouling by Amphibalanus spp. barnacles. Here, seven methods for extracting DNA from A.
View Article and Find Full Text PDFPhilos Trans R Soc Lond B Biol Sci
October 2019
Concerns about the bioaccumulation of toxic antifouling compounds have necessitated the search for alternative strategies to combat marine biofouling. Because many biologically essential minerals have deleterious effects on organisms at high concentration, one approach to preventing the settlement of marine foulers is increasing the local concentration of ions that are naturally present in seawater. Here, we used surface-active borate glasses as a platform to directly deliver ions (Na, Mg and BO) to the adhesive interface under acorn barnacles (Amphibalanus (=Balanus) amphitrite).
View Article and Find Full Text PDFClimate change (CC) is driving modification of the chemical and physical properties of estuaries and oceans with profound consequences for species and ecosystems. Numerous studies investigate CC effects from species to ecosystem levels, but little is known of the impacts on biofilm communities and on bioactive molecules such as cues, adhesives and enzymes. CC is induced by anthropogenic activity increasing greenhouse emissions leading to rises in air and water temperatures, ocean acidification, sea level rise and changes in ocean gyres and rainfall patterns.
View Article and Find Full Text PDFThe morphology and composition of tissue located within parietal shell canals of the barnacle Amphibalanus amphitrite are described. Longitudinal canal tissue nearly spans the length of side shell plates, terminating near the leading edge of the specimen basis in proximity to female reproductive tissue located throughout the peripheral sub-mantle region, i.e.
View Article and Find Full Text PDFSelf-assembled monolayers (SAMs) are widely used in science and engineering, and recent progress has demonstrated the utility of zwitterionic peptides with alternating lysine (K) and glutamic acid (E) residues for antifouling purposes. Aiming at developing a peptide-based fouling-resistant SAM suitable for presentation of surface-attached pheromones for barnacle larvae, we have investigated five different peptide SAMs, where four are based on the EK motif, and the fifth was designed based on general principles for fouling resistance. The SAMs were formed by self-assembly onto gold substrates via cysteine residues on the peptides, and formation of SAMs was verified via ellipsometry, wettability, infrared reflection-absorption spectroscopy and cyclic voltammetry.
View Article and Find Full Text PDFMarine macrofoulers (e.g., barnacles, tubeworms, mussels) create underwater adhesives capable of attaching themselves to almost any material.
View Article and Find Full Text PDFAs a transitional zone between riverine and marine environments, an estuary plays an important role for the sources, accumulation and transport of microplastics. Although estuarine environments are hotspots of microplastic pollution, the correlation between microplastic pollution and aquatic organisms is less known. Here we investigated microplastic pollution in wild oysters Saccostrea cucullata from 11 sampling sites along the Pearl River Estuary in South China.
View Article and Find Full Text PDFMultivariate analyses were used to investigate the influence of selected surface properties (Owens-Wendt surface energy and its dispersive and polar components, static water contact angle, conceptual sign of the surface charge, zeta potentials) on the attachment patterns of five biofouling organisms (Amphibalanus amphitrite, Amphibalanus improvisus, Bugula neritina, Ulva linza, and Navicula incerta) to better understand what surface properties drive attachment across multiple fouling organisms. A library of ten xerogel coatings and a glass standard provided a range of values for the selected surface properties to compare to biofouling attachment patterns. Results from the surface characterization and biological assays were analyzed separately and in combination using multivariate statistical methods.
View Article and Find Full Text PDFThis chapter tells the story of a research thread that identified and modified a pharmaceutical that could be a component of environmentally benign fouling management coatings. First, I present the background context of biofouling and how fouling is managed. The major target of the research is disrupting transduction of a complex process in all macrofouling organisms: metamorphosis.
View Article and Find Full Text PDFOxidases are found to play a growing role in providing functional chemistry to marine adhesives for the permanent attachment of macrofouling organisms. Here, we demonstrate active peroxidase and lysyl oxidase enzymes in the adhesive layer of adult Amphibalanus amphitrite barnacles through live staining, proteomic analysis, and competitive enzyme assays on isolated cement. A novel full-length peroxinectin (AaPxt-1) secreted by barnacles is largely responsible for oxidizing phenolic chemistries; AaPxt-1 is driven by native hydrogen peroxide in the adhesive and oxidizes phenolic substrates typically preferred by phenoloxidases (POX) such as laccase and tyrosinase.
View Article and Find Full Text PDF