Background: Although autoimmunity in MRL/lpr mice occurs due to a defect in Fas-mediated cell death of T cells, the role of Fas-independent apoptosis in pathogenesis has rarely been investigated. We have recently reported that receptor activator of nuclear factor (NF)-κB ligand (RANKL)-activated dendritic cells (DCs) play a key role in the pathogenesis of rheumatoid arthritis (RA) in MRL/lpr mice. We here attempted to establish a new therapeutic strategy with RANKL-activated DCs in RA by controlling apoptosis of peripheral T cells.
View Article and Find Full Text PDFPeripheral T cells are maintained by the apoptosis of activated T cells through the Fas-Fas ligand system. Although it is well known that normal T cells fail to survive in the Fas-deficient immune condition, the molecular mechanism for the phenomenon has yet to be elucidated. In this study, we demonstrate that rapid cell death and clearance of normal T cells were induced by Fas-deficient lpr macrophages.
View Article and Find Full Text PDFWe reported here that polyethylene glycol (PEG)-linked manganese pyrochlorophyllide a (PEG-MnPChlide a) possesses remarkable catalytic activity comparable to horseradish peroxidase (HRP). The PEG-MnPChlide a catalyzed the oxidation decoloration reaction of C.I.
View Article and Find Full Text PDF