Objectives: During musculoskeletal development, the vitamin D endocrine system is crucial, because vitamin D-dependent calcium absorption is a major regulator of bone growth. Because exercise regimens depend on bone mass, the direct action of active vitamin D (1,25-dihydroxyvitamin D [1,25(OH)D]) on musculoskeletal performance should be determined.
Methods: To evaluate the effect of 1,25(OH)D on muscle tissue, the vitamin D receptor (Vdr) gene was genetically inactivated in mouse skeletal muscle and the role of 1,25(OH)D-VDR signaling on locomotor function was assessed.
Objectives: Milk provide protective effects against bone loss caused by an impaired calcium balance. Although the effects of some elements have previously been confirmed, the involvement of milk basic protein (MBP) in bone mineral metabolism remains poorly characterized. Moreover, the importance of mineral nutrition sufficiency to establish the effect of MBP must be evaluated.
View Article and Find Full Text PDFAnimal studies using mice model such as vitamin D deficiency and global and conditional VDR knock out(KO)mice have disclosed that the physiological role of vitamin D strongly depends on the calcium balance. Vitamin D stimulates active intestinal calcium transport mechanism, thereby maintains normocalcemia that has priority over skeletal integrity. Besides the biological significance of vitamin D extensively studied, its precise function in non-classical target needs further investigation.
View Article and Find Full Text PDFObjectives: We investigated the relationships among M1 monocytes, M2 monocytes, osteoclast (OC) differentiation ability, and clinical characteristics in patients with rheumatoid arthritis (RA).
Methods: Peripheral blood mononuclear cells (PBMCs) were isolated from RA patients and healthy donors, and we then investigated the number of M1 monocytes or M2 monocytes by fluorescence-activated cell sorting. We also obtained and cultured CD14-positive cells from PBMCs from RA patients and healthy donors to investigate OC differentiation .
Extracellular low phosphate strongly enhances intestinal calcium absorption independently of active vitamin D [1,25(OH)D] signaling, but the underlying mechanisms remain poorly characterized. To elucidate the phosphate-dependent regulation of calcium transport, we investigated part of the enteral environment that is involved in 1,25(OH)D-independent calcium absorption, which responds to dietary phosphate levels in mice that lack intestinal vitamin D receptor ( Vdr) activity. Impaired calcium absorption in intestinal Vdr-null mice was improved by dietary phosphate restriction.
View Article and Find Full Text PDFClin Calcium
February 2018
Vitamin D endocrine system is required for bone and mineral homeostasis through the active form of vitamin D[1α,25(OH)D]transported to the target organs, where the vitamin D receptor(VDR)is present. The biological significance of 1α,25(OH)D-VDR signalling is regarded not only in classical target of vitamin D involved in calcium and phosphate homeostasis, such as intestine, bone, kidney and parathyroid glands, but also in many other non-classical target cells of vitamin D including skin keratinocytes, pancreatic β cells, cardiomyocytes, T-lymphocytes, bone marrow macrophages, among others. Although 1α,25(OH)D-VDR signalling in classical target organs of vitamin D has been extensively studied, its precise function in these target organs still needs further investigation.
View Article and Find Full Text PDFGamma-glutamyl carboxylase (GGCX) gene mutation causes GGCX syndrome (OMIM: 137167), which is characterized by pseudoxanthoma elasticum (PXE)-like symptoms and coagulation impairment. Here, we present a 55-year-old male with a novel homozygous deletion mutation, c.2,221delT, p.
View Article and Find Full Text PDFThe active form of vitamin D, 1,25(OH)2D, is a crucial regulator of calcium homeostasis, especially through stimulation of intestinal calcium transport. Lack of intestinal vitamin D receptor (VDR) signaling does however not result in hypocalcemia, because the increased 1,25(OH)2D levels stimulate calcium handling in extra-intestinal tissues. Systemic VDR deficiency, on the other hand, results in hypocalcemia because calcium handling is impaired not only in the intestine, but also in kidney and bone.
View Article and Find Full Text PDFThe increasing number of osteoporosis patients is a pressing issue worldwide. Osteoporosis frequently causes fragility fractures, limiting activities of daily life and increasing mortality. Many osteoporosis patients take numerous medicines due to other health issues; thus, it would be preferable if a single medicine could ameliorate osteoporosis and other conditions.
View Article and Find Full Text PDFVitamin D endocrine system is required for normal calcium and bone homeostasis. Trans-epithelial calcium absorption is initiated with calcium entry into the intestinal epithelial cells from luminal fluid through calcium permeable channels, and those expressions are strongly supported by vitamin D action. On the other hands, dietary treatment, mineral supplementation or restriction, successfully improves intestinal calcium absorption in global vitamin D receptor knock-out (VDR KO) mice, though vitamin D dependent active transport pathway is lacking.
View Article and Find Full Text PDFThe physiological role of vitamin D depends on calcium supply and calcium balance. When the calcium balance is normal, the major target of vitamin D is intestine. Vitamin D stimulates mainly active intestinal calcium transport mechanism.
View Article and Find Full Text PDFTo determine the prevalence of drug resistant bacteria colonizing laboratory mice, we isolated and characterized vancomycin-resistant Enterococcus species (VRE) from commercially available mice. A total of 24 VRE isolates were obtained from 19 of 21 mouse strains supplied by 4 commercial breeding companies. Of these, 19 isolates of E.
View Article and Find Full Text PDFCalcium and phosphate regulate numerous biological processes and they are essential for bone mass and bone quality. The calcium and phosphate balance largely depends on intestinal absorption, and the dietary content of these ions determines the type of transport. High dietary intake of calcium and phosphate enables absorption by passive transport, but often the dietary content of these ions is in the low-normal range, especially for calcium.
View Article and Find Full Text PDFJ Bone Miner Metab
January 2014
Mouse genetic studies have demonstrated that the 1,25-dihydroxyvitamin D [1,25(OH)2D] endocrine system is required for calcium (Ca(2+)) and bone homeostasis. These studies reported severe hypocalcemia and impaired bone mineralization associated with rickets in mutant mice. Specific phenotypes of these mice with an engineered deletion of 1,25(OH)2D cell signaling resemble the features observed in humans with the same congenital disease or severe 1,25(OH)2D deficiency.
View Article and Find Full Text PDFSerum calcium levels are tightly controlled by an integrated hormone-controlled system that involves active vitamin D [1,25(OH)(2)D], which can elicit calcium mobilization from bone when intestinal calcium absorption is decreased. The skeletal adaptations, however, are still poorly characterized. To gain insight into these issues, we analyzed the consequences of specific vitamin D receptor (Vdr) inactivation in the intestine and in mature osteoblasts on calcium and bone homeostasis.
View Article and Find Full Text PDFOsteoclast differentiation is critically dependent on calcium (Ca(2+)) signaling. Transient receptor potential vanilloid 4 (TRPV4), mediates Ca(2+) influx in the late stage of osteoclast differentiation and thereby regulates Ca(2+) signaling. However, the system-modifying effect of TRPV4 activity remains to be determined.
View Article and Find Full Text PDFUV-sensitive syndrome (UV(S)S) is a genodermatosis characterized by cutaneous photosensitivity without skin carcinoma. Despite mild clinical features, cells from individuals with UV(S)S, like Cockayne syndrome cells, are very UV sensitive and are deficient in transcription-coupled nucleotide-excision repair (TC-NER), which removes DNA damage in actively transcribed genes. Three of the seven known UV(S)S cases carry mutations in the Cockayne syndrome genes ERCC8 or ERCC6 (also known as CSA and CSB, respectively).
View Article and Find Full Text PDFNonsteroidal anti-inflammatory drugs (NSAIDs) are valuable agents; however, their use has been limited by their association with mucosal damage in the upper gastrointestinal tract. NSAIDs inhibit cyclooxygenase and consequently block the synthesis of prostaglandins, which have cytoprotective effects in gastric mucosa; these effects on prostaglandins have been thought to be major cause of NSAID-induced ulceration. However, studies indicate that additional NSAID-related mechanisms are involved in formation of gastric lesions.
View Article and Find Full Text PDFBcl2 subfamily proteins, including Bcl2 and Bcl-X(L), inhibit apoptosis. As osteoblast apoptosis is in part responsible for osteoporosis in sex steroid deficiency, glucocorticoid excess, and aging, bone loss might be inhibited by the upregulation of Bcl2; however, the effects of Bcl2 overexpression on osteoblast differentiation and bone development and maintenance have not been fully investigated. To investigate these issues, we established two lines of osteoblast-specific BCL2 transgenic mice.
View Article and Find Full Text PDFBest Pract Res Clin Endocrinol Metab
August 2011
The analysis of mice that lack systemically the actions of the active form of vitamin D, 1,25(OH)₂D, has shown that 1,25(OH)₂D is an essential regulator of calcium homeostasis and that its actions are aimed at maintaining serum calcium levels within narrow limits. Especially the stimulation of intestinal calcium transport by 1,25(OH)₂D is important for calcium and bone homeostasis. The involved transporters are however still elusive.
View Article and Find Full Text PDFDisuse osteoporosis, which occurs commonly in prolonged bed rest and immobilization, is becoming a major problem in modern societies; however, the molecular mechanisms underlying unloading-driven bone loss have not been fully elucidated. The osteocyte network is considered to be an ideal mechanosensor and mechanotransduction system. We searched for the molecules responsible for disuse osteoporosis using BCL2 transgenic mice, in which the osteocyte network was disrupted.
View Article and Find Full Text PDFTNF-α has been recognized as an important factor for osteoclastogenesis and plays an important role in bone resorption under pathological conditions. IL-12 and IL-18, which are T-cell mediators, are also important inflammatory cytokines. We have reported that IL-12 and IL-18 induce apoptosis in bone marrow cells treated with TNF-α in vitro and that osteoclastogenesis is inhibited by the interaction of TNF-α-induced Fas and the IL-12-induced Fas ligand (FasL).
View Article and Find Full Text PDFCytokines secreted by T cells play a pivotal role in inflammatory bone destruction. Tumor necrosis factor-α (TNF-α) is a major proinflammatory cytokine produced by macrophages following T cell activation, and directly promotes osteoclast differentiation resulting in accelerated bone resorption. Interferon-γ (IFN-γ) attenuates RANKL-initiated cellular signals through osteoclast formation and counterbalances aberrant bone resorption.
View Article and Find Full Text PDFCalcium signaling controls multiple cellular functions and is regulated by the release from internal stores and entry from extracellular fluid. In bone, osteoclast differentiation is induced by RANKL (receptor activator of NF-kappaB ligand)-evoked intracellular Ca(2+) oscillations, which trigger nuclear factor-activated T cells (NFAT) c1-responsive gene transcription. However, the Ca(2+) channels involved remain largely unidentified.
View Article and Find Full Text PDF