Advanced glycation end products (AGEs) accumulate in the plasma of pregnant women with hyperglycemia, potentially inducing oxidative stress and fetal developmental abnormalities. Although intrauterine hyperglycemia has been implicated in excessive fetal growth, the effects of maternal AGEs on fetal development remain unclear. We evaluated the differentiation regulators and cellular signaling in the skeletal muscles of infants born to control mothers (ICM), diabetic mothers (IDM), and diabetic mothers supplemented with either cis-palmitoleic acid (CPA) or trans-palmitoleic acid (TPA).
View Article and Find Full Text PDFWe previously reported that glycation induces insulin resistance in the hearts of newborn pups from a gestational diabetes mellitus (GDM) rat model. Administration of n-3 unsaturated fatty acids suppressed glycation and improved signaling in GDM rat pups. In this study, we investigated their effects on cranial neurons using the GDM rat model and PC12 cells derived from rat adrenal pheochromocytomas.
View Article and Find Full Text PDFMaternal obesity and diabetes are known to be involved in fetal myogenesis, but the later stages of myogenesis are not well understood. In this study, we investigated the influence of a hyperglycemic environment on L6 skeletal myoblast differentiation and the function of omega-7 palmitoleic acids. Exposure to a high concentration of glucose (25 mM) in high-glucose culture medium (HG) increased the expression of myogenic genes (MyoD, Myogenin, MRF4, Myhc2x, and Myhc2a) and the synthesis of myosin.
View Article and Find Full Text PDFPurpose: Gestational diabetes is associated with increased risk to the health of the mother and her offspring. In particular, the infants of diabetic mothers (IDMs) exhibit elevated levels of preterm birth, macrosomia, hypoglycemia, hypocalcemia, and cardiomyopathy. We have previously reported that IDMs showed abnormalities in cardiac Akt-related insulin signalling, and that these deficiencies in Akt-related signalling were attenuated by supplementing the maternal diet with fish-oil.
View Article and Find Full Text PDFAims: Differentiation-inducing factor 1 (DIF-1), originally discovered in the cellular slime mold Dictyostelium discoideum, and its derivatives possess pharmacological activities, such as the promotion of glucose uptake in non-transformed mammalian cells in vitro. Accordingly, DIFs are considered promising lead candidates for novel anti-diabetic drugs. The aim of this study was to assess the anti-diabetic and toxic effects of DIF-1 in mouse 3T3-L1 fibroblast cells in vitro and in diabetic rats in vivo.
View Article and Find Full Text PDF