Recent advances in the use of nano- and microparticles in drug delivery, cell therapy, and tissue engineering have led to increasing attention towards nanostructured microparticulate formulations for maximum benefit from both nano- and micron sized features. Scalable manufacturing of monodisperse nanostructured microparticles with tunable size, shape, content, and release rate remains a big challenge. Current technology, mainly comprises complex multi-step chemical procedures with limited control over these aspects.
View Article and Find Full Text PDFMicro-reservoir based drug delivery systems have the potential to provide targeted drug release locally in the intestine, i.e. at the inflamed areas of the intestine of patients with inflammatory bowel disease (IBD).
View Article and Find Full Text PDFMicroparticles are ubiquitous in applications ranging from electronics and drug delivery to cosmetics and food. Conventionally, non-spherical microparticles in various materials with specific shapes, sizes, and physicochemical properties have been fabricated using cleanroom-free lithography techniques such as soft lithography and its high-resolution version particle replication in non-wetting template (PRINT). These methods process the particle material in its liquid/semi-liquid state by deformable molds, limiting the materials from which the particles and the molds can be fabricated.
View Article and Find Full Text PDFMicrocontainers are reservoir-based advanced drug delivery systems (DDS) that have proven to increase the bioavailibity of the small-molecule drugs, targeting of biomolecules, protection of vaccines and improved treatment of Pseudomonas aeruginosa. However, high-throughput loading of these micron-sized devices with drug has been challenging. Hot punching is a new technique that is a fast, simple and single-step process where the microdevices are themselves used as mold to punch biocompatible and biodegradable drug-polymer films, thereby loading the containers.
View Article and Find Full Text PDFMicrofabrication techniques have been applied to develop micron-scale devices for oral drug delivery with a high degree of control over size, shape and material composition. Recently, microcontainers have been introduced as a novel approach to obtain unidirectional release to avoid luminal drug loss, enhance drug permeation, protect drug payload from the harsh environment of the stomach, and explore the ability for targeted drug delivery. However, in order to eventually pave the way for real life applications of these microfabricated drug delivery systems, it is necessary to fabricate them in biodegradable materials approved for similar applications and with strategies that potentially allow for large scale production.
View Article and Find Full Text PDFHot punching with two different strategies has been demonstrated as a new method of fabricating high aspect ratio 3D microstructures for drug delivery. It has been shown that this process is highly versatile with good replication fidelity and yield.
View Article and Find Full Text PDF