Atrial fibrillation (AF) has become one of the most significant health problems worldwide, warranting urgent answers to currently pending questions on the effects of AF on brain function. Recent evidence has emerged to show an association between AF and an increased risk of developing dementia and worsening of stroke outcomes. A healthy brain is protected by the blood-brain barrier (BBB), which is formed by the endothelial cells that line cerebral capillaries.
View Article and Find Full Text PDFIncreased iron levels and dysregulated iron homeostasis, or both, occur in several lung diseases. Here, the effects of iron accumulation on the pathogenesis of pulmonary fibrosis and associated lung function decline was investigated using a combination of murine models of iron overload and bleomycin-induced pulmonary fibrosis, primary human lung fibroblasts treated with iron, and histological samples from patients with or without idiopathic pulmonary fibrosis (IPF). Iron levels are significantly increased in iron overloaded transferrin receptor 2 (Tfr2) mutant mice and homeostatic iron regulator (Hfe) gene-deficient mice and this is associated with increases in airway fibrosis and reduced lung function.
View Article and Find Full Text PDFAlzheimer's disease, the most common form of dementia, was first formally described in 1907 yet its etiology has remained elusive. Recent proposals that Aβ peptide may be part of the brain immune response have revived longstanding contention about the possibility of causal relationships between brain pathogens and Alzheimer's disease. Research has focused on infectious pathogens that may colonize the brain such as herpes simplex type I.
View Article and Find Full Text PDFWe previously demonstrated elevated brain iron levels in myelinated structures and associated cells in a hemochromatosis Hfe (-/-) xTfr2 (mut) mouse model. This was accompanied by altered expression of a group of myelin-related genes, including a suite of genes causatively linked to the rare disease family 'neurodegeneration with brain iron accumulation' (NBIA). Expanded data mining and ontological analyses have now identified additional myelin-related transcriptome changes in response to brain iron loading.
View Article and Find Full Text PDF