Ann N Y Acad Sci
September 2016
Esophageal and gastroesophageal junction (GEJ) diseases are highly prevalent worldwide and are a significant socioeconomic burden. Recently, applications of multiscale mathematical models of the upper gastrointestinal tract have gained attention. These in silico investigations can contribute to the development of a virtual esophagus modeling framework as part of the larger GIome and Physiome initiatives.
View Article and Find Full Text PDFGastrointestinal slow waves are generated within networks of interstitial cells of Cajal (ICCs). In the intact tissue, slow waves are entrained to neighboring ICCs with higher intrinsic frequencies, leading to active propagation of slow waves. Degradation of ICC networks in humans is associated with motility disorders; however, the pathophysiological mechanisms of this relationship are uncertain.
View Article and Find Full Text PDFThe development of an anatomically realistic biophysically based model of the human gastrointestinal (GI) tract is presented. A major objective of this work is to develop a modelling framework that can be used to integrate the physiological, anatomical and medical knowledge of the GI system. The anatomical model was developed by fitting derivative continuous meshes to digitised data taken from images of the visible man.
View Article and Find Full Text PDF