Publications by authors named "Rita V De Smet"

A convenient way to classify uremic solutes is to subdivide them according to the physicochemical characteristics influencing their dialytic removal into small water-soluble compounds (<500 Da), protein-bound compounds, and middle molecules (>500 Da). The prototype of small water-soluble solutes remains urea although the proof of its toxicity is scanty. Only a few other water-soluble compounds exert toxicity (e.

View Article and Find Full Text PDF

Background: The Genius single-pass batch system for hemodialysis contains a closed reservoir and dialysate circuit of 75 L dialysate. The unused dialysate is withdrawn at the top of the reservoir and the spent fluid is reintroduced into the container at the bottom. Although it has been claimed that both fractions remain unmixed during the dialysis session, no direct proof of this assumption has yet been provided.

View Article and Find Full Text PDF

Middle molecules can be defined as compounds with a molecular weight (MW) above 500 Da. An even broader definition includes those molecules that do not cross the membranes of standard low-flux dialyzers, not only because of molecular weight, but also because of protein binding and/or multicompartmental behavior. Recently, several of these middle molecules have been linked to the increased tendency of uremic patients to develop inflammation, malnutrition, and atheromatosis.

View Article and Find Full Text PDF