Publications by authors named "Rita S Santos"

Background: Spirituality is a core dimension of palliative care. However, Portuguese palliative care teams do not have many spiritual care resources.

Methods: Cross-sectional and observational survey studies were used to characterise spiritual care resources in Portuguese palliative care teams based on a non-probabilistic convenience sampling.

View Article and Find Full Text PDF

Nucleic acid mimics (NAMs) have demonstrated high potential as antibacterial drugs. However, very few studies have assessed their possible diffusion across the bacterial envelope. In this work, we studied NAMs' diffusion in lipid bilayer systems that mimic the bacterial outer membrane using molecular dynamics (MD) simulations.

View Article and Find Full Text PDF

The rise of infectious diseases as a public health concern has necessitated the development of rapid and precise diagnostic methods. Imaging techniques like nuclear and optical imaging provide the ability to diagnose infectious diseases within the body, eliminating delays caused by sampling and pre-enrichments of clinical samples and offering spatial information that can aid in a more informed diagnosis. Traditional molecular probes are typically created to image infected tissue without accurately identifying the pathogen.

View Article and Find Full Text PDF

Antimicrobial resistance (AMR) is a growing concern because it causes microorganisms to develop resistance to drugs commonly used to treat infections. This results in increased difficulty in treating infections, leading to higher mortality rates and significant economic effects. Investing in new antimicrobial agents is, therefore, necessary to prevent and control AMR.

View Article and Find Full Text PDF

Antimicrobial resistance (AMR) is considered one of the greatest threats to global health. Methicillin-resistant (MRSA) remains at the core of this threat, accounting for about 90% of infections widespread in the community and hospital settings. In recent years, the use of nanoparticles (NPs) has emerged as a promising strategy to treat MRSA infections.

View Article and Find Full Text PDF

Antisense oligonucleotides (ASOs) composed of nucleic acid mimics (NAMs) monomers are considered as potential novel therapeutic drugs against bacterial infections. However, bacterial envelopes are generally impermeable to naked oligonucleotides. Herein, liposomes loaded with NAMs-modified oligonucleotides (LipoNAMs) were evaluated to deliver ASOs in Escherichia coli.

View Article and Find Full Text PDF

Development of specific probes to study the spatial distribution of microorganisms is essential to understand the ecology of human microbiota. Herein, we assess the possibility of using liposomes loaded with fluorescently labeled nucleic acid mimics (LipoNAMs) to image Gram-negative and Gram-positive bacteria. We proved that liposome fusion efficiencies were similar in both Gram-negative and Gram-positive bacteria but that the efficiency was highly dependent on the lipid concentration.

View Article and Find Full Text PDF

Bacterial resistance to antibiotics threatens the ability to treat life-threatening bloodstream infections. Oligonucleotides (ONs) composed of nucleic acid mimics (NAMs) able to inhibit essential genes can become an alternative to traditional antibiotics, as long as they are safely transported in human serum upon intravenous administration and they are carried across the multilayered bacterial envelopes, impermeable to ONs. In this study, fusogenic liposomes were considered to transport the ONs and promote their internalization in clinically relevant bacteria.

View Article and Find Full Text PDF

Currently, the interactions occurring between oligonucleotides and the cellular envelope of bacteria are not fully resolved at the molecular level. Understanding these interactions is essential to gain insights on how to improve the internalization of the tagged oligonucleotides during fluorescence in situ hybridization (FISH). Agent-based modeling (ABM) is a promising in silico tool to dynamically simulate FISH and bring forward new knowledge on this process.

View Article and Find Full Text PDF

Oligonucleotides able to hybridize bacterial RNA via in situ hybridization may potentially act as new antimicrobials, replacing antibiotics, and as fast in vivo diagnostic probes, outperforming current clinical methodologies. Nonetheless, oligonucleotides are not able to efficiently permeate the multi-layered bacterial envelope to reach their target RNA in the cytosol. Cationic fusogenic liposomes are here suggested as vehicles to enable the internalization of oligonucleotides in bacteria.

View Article and Find Full Text PDF

With the dramatic consequences of bacterial resistance to antibiotics, nanomaterials and molecular transporters have started to be investigated as alternative antibacterials or anti-infective carrier systems to improve the internalization of bactericidal drugs. However, the capability of nanomaterials/molecular transporters to overcome the bacterial cell envelope is poorly understood. It is critical to consider the sophisticated architecture of bacterial envelopes and reflect how nanomaterials/molecular transporters can interact with these envelopes, being the major aim of this review.

View Article and Find Full Text PDF

The rising antimicrobial resistance contributes to 25000 annual deaths in Europe. This threat to the public health can only be tackled if novel antimicrobials are developed, combined with a more precise use of the currently available antibiotics through the implementation of fast, specific, diagnostic methods. Nucleic acid mimics (NAMs) that are able to hybridize intracellular bacterial RNA have the potential to become such a new class of antimicrobials and additionally could serve as specific detection probes.

View Article and Find Full Text PDF

Fluorescence in situ hybridization (FISH) is a molecular technique widely used for the detection and characterization of microbial populations. FISH is affected by a wide variety of abiotic and biotic variables and the way they interact with each other. This is translated into a wide variability of FISH procedures found in the literature.

View Article and Find Full Text PDF

Helicobacter pylori infects more than 50% of the worldwide population. It is mostly found deep in the gastric mucus lining of the stomach, being a major cause of peptic ulcers and gastric adenocarcinoma. To face the increasing resistance of H.

View Article and Find Full Text PDF

Despite the fact that fluorescence in situ hybridization (FISH) is a well-established technique to identify microorganisms, there is a lack of understanding concerning the interaction of the different factors affecting the obtained fluorescence. In here, we used flow cytometry to study the influence of three essential factors in hybridization - temperature, time and formamide concentration - in an effort to optimize the performance of a Peptide Nucleic Acid (PNA) probe targeting bacteria (EUB338). The PNA-FISH optimization was performed with bacteria representing different families employing response surface methodology.

View Article and Find Full Text PDF