ATM and ATR are conserved regulators of the DNA damage response linked to cancer. Comprehensive DNA sequencing efforts identified ~4,000 cancer-associated mutations in ATM/ATR; however, their cancer implications remain largely unknown. To gain insights, we identify functionally important conserved residues in ATM, ATR and budding yeast Mec1 via cancer genome datamining and a functional genetic analysis, respectively.
View Article and Find Full Text PDFRibonucleotide reductase (RNR) is an essential holoenzyme required for synthesis of dNTPs. The genome encodes for two catalytic subunits, Rnr1 and Rnr3. While Rnr1 is required for DNA replication and DNA damage repair, the function(s) of Rnr3 is unknown.
View Article and Find Full Text PDFThe ataxia-telangiectasia mutated/ATM and Rad3-related (ATM/ATR) family proteins are evolutionarily conserved serine/threonine kinases best known for their roles in mediating the DNA damage response. Upon activation, ATM/ATR phosphorylate numerous targets to stabilize stalled replication forks, repair damaged DNA, and inhibit cell cycle progression to ensure survival of the cell and safeguard integrity of the genome. Intriguingly, separation of function alleles of the human ATM and MEC1, the budding yeast ATM/ATR, were shown to confer widespread protein aggregation and acute sensitivity to different types of proteotoxic agents including heavy metal, amino acid analogue, and an aggregation-prone peptide derived from the Huntington's disease protein.
View Article and Find Full Text PDFUnlike most checkpoint proteins, Mec1, an ATM/ATR kinase, is essential. We utilized mec1-4, a missense allele (E2130K) that confers diminished kinase activity, to interrogate the question. Unbiased screen for genetic interactors of mec1-4 identified numerous genes involved in proteostasis.
View Article and Find Full Text PDFInactivation of Mec1, the budding yeast ATR, results in a permanent S phase arrest followed by chromosome breakage and cell death during G2/M. The S phase arrest is proposed to stem from a defect in Mec1-mediated degradation of Sml1, a conserved inhibitor of ribonucleotide reductase (RNR), causing a severe depletion in cellular dNTP pools. Here, the casual link between the S phase arrest, Sml1, and dNTP-levels is examined using a temperature sensitive mec1 mutant.
View Article and Find Full Text PDFCold Spring Harb Protoc
November 2015
Meiosis is a diploid-specific differentiation program that consists of a single round of genome duplication followed by two rounds of chromosome segregation. These events result in halving of the genetic complement, which is a requirement for formation of haploid reproductive cells (i.e.
View Article and Find Full Text PDFCold Spring Harb Protoc
November 2015
Under conditions of nutrient deprivation, yeast cells initiate a differentiation program in which meiosis is induced and spores are formed. During meiosis, one round of genome duplication is followed by two rounds of chromosome segregation (meiosis I and meiosis II) to generate four haploid nuclei. Meiotic recombination occurs during prophase I.
View Article and Find Full Text PDFCold Spring Harb Protoc
October 2015
During meiosis, one round of genome duplication is followed by two rounds of chromosome segregation, resulting in the halving of the genetic complement and the formation of haploid reproductive cells. In most organisms, intimate juxtaposition of homologous chromosomes and homologous recombination during meiotic prophase are required for meiotic success. Here we present a general protocol for visualizing chromosomal proteins and homolog interaction on surface-spread nuclei and a widely used protocol for analyzing meiotic recombination based on an engineered hotspot referred to as HIS4::LEU2.
View Article and Find Full Text PDFMeiosis in Saccharomyces cerevisiae can be induced by deprivation of nutrients. Here, we present a protocol for inducing synchronous meiosis in SK1, the most efficient and synchronous yeast strain for meiosis, by exposing SK1 cells to liquid medium that contains potassium acetate as a nonfermentable carbon source and lacks nitrogen. These synchronous meiotic yeast cultures can be subjected to a range of molecular and cytological analyses, making them useful for investigating the genetic and molecular determinants of meiosis.
View Article and Find Full Text PDFA hallmark of the conserved ATM/ATR signalling is its ability to mediate a wide range of functions utilizing only a limited number of adaptors and effector kinases. During meiosis, Tel1 and Mec1, the budding yeast ATM and ATR, respectively, rely on a meiotic adaptor protein Hop1, a 53BP1/Rad9 functional analog, and its associated kinase Mek1, a CHK2/Rad53-paralog, to mediate multiple functions: control of the formation and repair of programmed meiotic DNA double strand breaks, enforcement of inter-homolog bias, regulation of meiotic progression, and implementation of checkpoint responses. Here, we present evidence that the multi-functionality of the Tel1/Mec1-to-Hop1/Mek1 signalling depends on stepwise activation of Mek1 that is mediated by Tel1/Mec1 phosphorylation of two specific residues within Hop1: phosphorylation at the threonine 318 (T318) ensures the transient basal level Mek1 activation required for viable spore formation during unperturbed meiosis.
View Article and Find Full Text PDFMammalian common fragile sites are loci of frequent chromosome breakage and putative recombination hotspots. Here, we utilized Replication Slow Zones (RSZs), a budding yeast homolog of the mammalian common fragile sites, to examine recombination activities at these loci. We found that rates of URA3 inactivation of a hisG-URA3-hisG reporter at RSZ and non-RSZ loci were comparable under all conditions tested, including those that specifically promote chromosome breakage at RSZs (hydroxyurea [HU], mec1Δ sml1Δ, and high temperature), and those that suppress it (sml1Δ and rrm3Δ).
View Article and Find Full Text PDFSynthetic genetic array (SGA) analysis automates yeast genetics, enabling high-throughput construction of ordered arrays of double mutants. Quantitative colony sizes derived from SGA analysis can be used to measure cellular fitness and score for genetic interactions, such as synthetic lethality. Here we show that SGA colony sizes also can be used to obtain global maps of meiotic recombination because recombination frequency affects double-mutant formation for gene pairs located on the same chromosome and therefore influences the size of the resultant double-mutant colony.
View Article and Find Full Text PDFAn essential feature of meiosis is Spo11 catalysis of programmed DNA double strand breaks (DSBs). Evidence suggests that the number of DSBs generated per meiosis is genetically determined and that this ability to maintain a pre-determined DSB level, or "DSB homeostasis", might be a property of the meiotic program. Here, we present direct evidence that Rec114, an evolutionarily conserved essential component of the meiotic DSB-machinery, interacts with DSB hotspot DNA, and that Tel1 and Mec1, the budding yeast ATM and ATR, respectively, down-regulate Rec114 upon meiotic DSB formation through phosphorylation.
View Article and Find Full Text PDFFragile sites are loci of recurrent chromosome breakage in the genome. They are found in organisms ranging from bacteria to humans and are implicated in genome instability, evolution, and cancer. In budding yeast, inactivation of Mec1, a homolog of mammalian ATR, leads to chromosome breakage at fragile sites referred to as replication slow zones (RSZs).
View Article and Find Full Text PDFFragile sites are specific loci within the genome that exhibit increased tendencies for chromosome breakage. They are conserved among mammals and are also found in lower eukaryotes including yeast and fly. Many conditions, including mutations and exogenous factors, contribute to fragile site expression, but the nature of interaction among them remains elusive.
View Article and Find Full Text PDFAn essential feature of meiosis is interhomolog recombination whereby a significant fraction of the programmed meiotic double-strand breaks (DSBs) is repaired using an intact homologous non-sister chromatid rather than a sister. Involvement of Mec1 and Tel1, the budding yeast homologs of the mammalian ATR and ATM kinases, in meiotic interhomlog bias has been implicated, but the mechanism remains elusive. Here, we demonstrate that Mec1 and Tel1 promote meiotic interhomolog recombination by targeting the axial element protein Hop1.
View Article and Find Full Text PDFBudding yeast Mec1, a homolog of mammalian ATR/ATM, is an essential chromosome-based signal transduction protein. Mec1 is a key checkpoint regulator and plays a critical role in the maintenance of genome stability. Mec1 is also required for meiosis; loss of Mec1 functions leads to a number of meiotic defects including reduction in recombination, loss of inter-homolog bias, loss of crossover control, and failure in meiotic progression.
View Article and Find Full Text PDFMitotic disjunction of the repetitive ribosomal DNA (rDNA) involves specialized segregation mechanisms dependent on the conserved phosphatase Cdc14. The reason behind this requirement is unknown. We show that rDNA segregation requires Cdc14 partly because of its physical length but most importantly because a fraction of ribosomal RNA (rRNA) genes are transcribed at very high rates.
View Article and Find Full Text PDFBudding yeast Mec1, homolog of mammalian ATR, is an essential protein that mediates S-phase checkpoint responses and meiotic recombination. Elimination of Mec1 function leads to genomewide fork stalling followed by chromosome breakage. Breaks do not result from stochastic collapse of stalled forks or other incidental lesions; instead, they occur in specific regions of the genome during a G2 chromosomal transition.
View Article and Find Full Text PDF