The class A G-protein-coupled receptors (GPCRs) Orexin-1 (OX1) and Orexin-2 (OX2) are located predominantly in the brain and are linked to a range of different physiological functions, including the control of feeding, energy metabolism, modulation of neuro-endocrine function, and regulation of the sleep-wake cycle. Site-directed mutagenesis (SDM) and domain exchange (chimera) studies have provided important insight into key features of the OX1 and OX2 binding sites. However, the precise determinants of antagonist binding and selectivity are still not fully known.
View Article and Find Full Text PDFWe have identified ramshackle (ram) as a dominant suppressor of hedgehog loss-of-function in the developing Drosophila eye. We have characterized the gene and it encodes a double bromodomain protein with eight WD40 repeats. The Ram protein is localized predominantly to polytene chromosome interbands and is required for the transcription of some genes.
View Article and Find Full Text PDFIn the developing Drosophila eye, the morphogenetic furrow is a developmental organizing center for patterning and cell proliferation. The furrow acts both to limit eye size and to coordinate the number of cells to the number of facets. Here we report the molecular and functional characterization of Drosophila mini-me (mnm), a potential regulator of cell proliferation and survival in the developing eye.
View Article and Find Full Text PDFVertebrate synapsins are abundant synaptic vesicle phosphoproteins that have been proposed to fine-regulate neurotransmitter release by phosphorylation-dependent control of synaptic vesicle motility. However, the consequences of a total lack of all synapsin isoforms due to a knock-out of all three mouse synapsin genes have not yet been investigated. In Drosophila a single synapsin gene encodes several isoforms and is expressed in most synaptic terminals.
View Article and Find Full Text PDFBeta-amyloid peptides that are cleaved from the amyloid precursor protein (APP) play a critical role in Alzheimer's disease (AD) pathophysiology. Here, we show that in Drosophila, the targeted expression of the key genes of AD, APP, the beta-site APP-cleaving enzyme BACE, and the presenilins led to the generation of beta-amyloid plaques and age-dependent neurodegeneration as well as to semilethality, a shortened life span, and defects in wing vein development. Genetic manipulations or pharmacological treatments with secretase inhibitors influenced the activity of the APP-processing proteases and modulated the severity of the phenotypes.
View Article and Find Full Text PDF