Publications by authors named "Rita R Finones"

Although blockade of androgen receptor (AR) signaling represents the main treatment for advanced prostate cancer (PrCa), many patients progress to a lethal phenotype of "Castration-Resistant" prostate cancer (CR-PrCa). With the hypothesis that early PrCa may harbor a population of androgen-unresponsive cancer cells as precursors to CR-recurrent disease, we undertook the propagation of androgen-independent cells from PrCa-prostatectomy samples of early, localized (Stage-I) cases. A collection of 120 surgical specimens from prostatectomy cases was established, among which 54 were adenocarcinomas.

View Article and Find Full Text PDF

Magnetic nanoparticles (MNPs) have shown great promise for use as tools in a wide variety of biomedical applications, some of which require the delivery of large numbers of MNPs onto or into the cells of interest. Here we develop a quantifiable model cell system and show that intracellular delivery of even moderate levels of iron oxide (Fe(2)O(3)) nanoparticles may adversely affect cell function. More specifically, we show that exposure to increasing concentrations of anionic MNPs, from 0.

View Article and Find Full Text PDF

Vertically aligned yet laterally spaced nanoscale TiO2 nanotubes have been grown on Ti by anodization, and the growth of MC3T3-E1 osteoblast cells on such nanotubes has been investigated. The adhesion/propagation of the osteoblast is substantially improved by the topography of the TiO2 nanotubes with the filopodia of growing cells actually going into the nanotube pores, producing an interlocked cell structure. The presence of the nanotube structure induced a significant acceleration in the growth rate of osteoblast cells by as much as approximately 300-400%.

View Article and Find Full Text PDF

A vertically aligned nanotube array of titanium oxide was fabricated on the surface of titanium substrate by anodization. The nanotubes were then treated with NaOH solution to make them bioactive, and to induce growth of hydroxyapatite (bone-like calcium phosphate) in a simulated body fluid. It is shown that the presence of TiO2 nanotubes induces the growth of a "nano-inspired nanostructure", i.

View Article and Find Full Text PDF