Sprouting angiogenesis is fundamental for development and contributes to cancer, diabetic retinopathy, and cardiovascular diseases. Sprouting angiogenesis depends on the invasive properties of endothelial tip cells. However, there is very limited knowledge on how tip cells invade into tissues.
View Article and Find Full Text PDFCells need to sense their mechanical environment during the growth of developing tissues and maintenance of adult tissues. The concept of force-sensing mechanisms that act through cell-cell and cell-matrix adhesions is now well established and accepted. Additionally, it is widely believed that force sensing can be mediated through cilia.
View Article and Find Full Text PDFChirality is a property of asymmetry between an object and its mirror image. Most biomolecules and many cell types are chiral. In the left-right organizer (LRO), cilia-driven flows transfer such chirality to the body scale.
View Article and Find Full Text PDFFluid flows generated by motile cilia are guiding the establishment of the left-right asymmetry of the body in the vertebrate left-right organizer. Competing hypotheses have been proposed: the direction of flow is sensed either through mechanosensation, or via the detection of chemical signals transported in the flow. We investigated the physical limits of flow detection to clarify which mechanisms could be reliably used for symmetry breaking.
View Article and Find Full Text PDFLeft-right patterning and asymmetric morphogenesis arise from a complex set of molecular and cellular interactions that are particularly dynamic and associated with mechanical forces. How do mechanical forces translate into tissular asymmetries? Are these forces asymmetrical de novo, or do they build up from pre-existing asymmetries? Advances in developmental genetics, live imaging and cell biology have recently shed light on the origins of mechanical forces generated at the cell scale and their implication in asymmetric patterning and morphogenesis is now emerging. Here we ask when and how, molecular asymmetries and mechanical forces contribute to left-right patterning and organ asymmetries.
View Article and Find Full Text PDFInternal organs are asymmetrically positioned inside the body. Embryonic motile cilia play an essential role in this process by generating a directional fluid flow inside the vertebrate left-right organizer. Detailed characterization of how fluid flow dynamics modulates laterality is lacking.
View Article and Find Full Text PDFThe pattern of blood flow has long been thought to play a significant role in vascular morphogenesis, yet the flow-sensing mechanism that is involved at early embryonic stages, when flow forces are low, remains unclear. It has been proposed that endothelial cells use primary cilia to sense flow, but this has never been tested in vivo. Here we show, by noninvasive, high-resolution imaging of live zebrafish embryos, that endothelial cilia progressively deflect at the onset of blood flow and that the deflection angle correlates with calcium levels in endothelial cells.
View Article and Find Full Text PDF