Publications by authors named "Rita Nichiporuk"

Despite the prevalence of nitrate reduction in groundwater, the biotransformation of per- and polyfluoroalkyl substances (PFAS) under nitrate-reducing conditions remains mostly unknown compared with aerobic or strong reducing conditions. We constructed microcosms under nitrate-reducing conditions to simulate the biotransformation occurring at groundwater sites impacted by aqueous film-forming foams (AFFFs). We investigated the biotransformation of 6:2 fluorotelomer thioether amido sulfonate (6:2 FtTAoS), a principal PFAS constituent of several AFFF formulations using both quantitative liquid chromatography-tandem mass spectrometry (LC-MS/MS) and qualitative high-resolution mass spectrometry analyses.

View Article and Find Full Text PDF

The fate of per and polyfluoroalkyl substances (PFASs) in aqueous filmforming foams (AFFFs) under anaerobic conditions has not been well characterized, leaving major gaps in our understanding of PFAS fate and transformation at contaminated sites. In this study, the biotransformation of 6:2 fluorotelomer thioether amido sulfonate (6:2 FtTAoS), a component of several AFFF formulations, was investigated under sulfate-reducing conditions in microcosms inoculated with either pristine or AFFF-impacted solids. To identify the transformation products, we used high-resolution mass spectrometry and employed suspect-screening and nontargeted compound identification methods.

View Article and Find Full Text PDF

Cysteine can be specifically functionalized by a myriad of acid-base conjugation strategies for applications ranging from probing protein function to antibody-drug conjugates and proteomics. In contrast, selective ligation to the other sulfur-containing amino acid, methionine, has been precluded by its intrinsically weaker nucleophilicity. Here, we report a strategy for chemoselective methionine bioconjugation through redox reactivity, using oxaziridine-based reagents to achieve highly selective, rapid, and robust methionine labeling under a range of biocompatible reaction conditions.

View Article and Find Full Text PDF

Small molecule iron-chelators, siderophores, are very important in facilitating the acquisition of Fe(III), an essential element for pathogenic bacteria. Many Gram-negative outer-membrane transporters and Gram-positive lipoprotein siderophore-binding proteins have been characterized, and the binding ability of outer-membrane transporters and siderophore-binding proteins for Fe-siderophores has been determined. However, there is little information regarding the binding ability of these proteins for apo-siderophores, the iron-free chelators.

View Article and Find Full Text PDF

Citrate is a common biomolecule that chelates Fe(III). Many bacteria and plants use ferric citrate to fulfill their nutritional requirement for iron. Only the Escherichia coli ferric citrate outer-membrane transport protein FecA has been characterized; little is known about other ferric citrate-binding proteins.

View Article and Find Full Text PDF

The synthesis and characterization of new cluster compounds represented by the series Ir(4)(CO)(12-x)L(x) (L = tert-butyl-calix[4]-arene(OPr)(3)(OCH(2)PPh(2)); x = 2 and 3) is reported using ESI mass spectrometry, NMR spectroscopy, IR spectroscopy and single-crystal X-ray diffraction. Thermally driven decarbonylation of the cluster compound series represented by x = 1-3 according to the formula above is followed via FTIR and NMR spectroscopies, and dynamic light scattering in toluene solution. The propensity of these clusters to decarbonylate in solution is shown to be directly correlated with number density of adsorbed calixarene phosphine ligands and controlled via Pauli repulsion between metal d and CO 5σ orbitals.

View Article and Find Full Text PDF

Iron deprivation activates the expression of components of the siderophore-mediated iron acquisition systems in Bacillus subtilis, including not only the synthesis and uptake of its siderophore bacillibactin but also expression of multiple ABC transporters for iron scavenging using xenosiderophores. The yclNOPQ operon is shown to encode the complete transporter for petrobactin (PB), a photoreactive 3,4-catecholate siderophore produced by many members of the B. cereus group, including B.

View Article and Find Full Text PDF

During growth under iron limitation, Bacillus cereus and Bacillus anthracis, two human pathogens from the Bacillus cereus group of Gram-positive bacteria, secrete two siderophores, bacillibactin (BB) and petrobactin (PB), for iron acquisition via membrane-associated substrate-binding proteins (SBPs) and other ABC transporter components. Since PB is associated with virulence traits in B. anthracis, the PB-mediated iron uptake system presents a potential target for antimicrobial therapies; its characterization in B.

View Article and Find Full Text PDF

In ongoing attempts of directed synthesis of high-nuclearity Au-Pt carbonyl/phosphine clusters with [Ni6(CO)12]2- used as reducing agent and CO source, we have isolated and characterized two new closely related variable-stoichiometric trimetallic clusters, Pt3(Pt(1-x)Ni(x))(AuPPh3)2(mu2-CO)4(CO)(PPh3)3 (1) and Pt2(Pt(2-y)Ni(y))(AuPPh3)2(mu2-CO)4(CO)2(PPh3)2 (2). Their M4Au2 cores may be envisioned as substitutional disordered butterfly-based M4Au2 frameworks (M = Pt/Ni) formed by connections of the two basal M(B) atoms with both (Au-Au)-linked Au(PPh3) moieties. Based upon low-temperature CCD X-ray diffraction studies of eight crystals obtained from different samples, ligation-induced site-specific Pt/Ni substitutional disorder (involving formal insertion of Ni in place of Pt) in a given crystal was found to occur only at the one OC-attached basal M(B) site in 1 or at both OC-attached basal M(B) sites in 2 corresponding to a crystal composite of the Pt3(Pt(1-x)Ni(x))Au2 core in 1 or of the Pt2(Pt(2-y)Ni(y))Au2 core in 2; the Ph3P-attached M(B) site (M(B) = Pt) in 1 and two wingtip M(w) sites (M(w) = Pt) in 1 and 2 were not substitutionally disordered.

View Article and Find Full Text PDF