Background And Purpose: In this study we attempt to automatically classify individual patients with different parkinsonian disorders, making use of pattern recognition techniques to distinguish among several forms of parkinsonisms (multi-class classification), based on a set of binary classifiers that discriminate each disorder from all others.
Methods: We combine diffusion tensor imaging, proton spectroscopy and morphometric-volumetric data to obtain MR quantitative markers, which are provided to support vector machines with the aim of recognizing the different parkinsonian disorders. Feature selection is used to find the most important features for classification.
This paper aims to identify approaches that generate appropriate synthetic data (computer generated) for cardiac phase-resolved blood-oxygen-level-dependent (CP-BOLD) MRI. CP-BOLD MRI is a new contrast agent- and stress-free approach for examining changes in myocardial oxygenation in response to coronary artery disease. However, since signal intensity changes are subtle, rapid visualization is not possible with the naked eye.
View Article and Find Full Text PDF