Publications by authors named "Rita Meskiene"

Enzymatic degradation of plastic pollution offers a promising environmentally friendly waste management strategy, however, suitable biocatalysts must be screened and developed. Traditional screening methods using soluble or solubilised polymers do not necessarily identify enzymes that are effective against solid or crystalline polymers. This study presents a simple, time-saving and cost-effective method for identifying microorganisms and enzymes capable of degrading polymeric films.

View Article and Find Full Text PDF

Cytidine deaminases (CDAs) catalyze the hydrolytic deamination of cytidine and 2'-deoxycytidine to uridine and 2'-deoxyuridine. Here, we report that prokaryotic homo-tetrameric CDAs catalyze the nucleophilic substitution at the fourth position of -acyl-cytidines, -alkyl-cytidines, and -alkyloxycarbonyl-cytidines, and -alkylthio-uridines and -alkyl-uridines, converting them to uridine and corresponding amide, amine, carbamate, thiol, or alcohol as leaving groups. The x-ray structure of a metagenomic CDA_F14 and the molecular modeling of the CDAs used in this study show a relationship between the bulkiness of a leaving group and the volume of the binding pocket, which is partly determined by the flexible β3α3 loop of CDAs.

View Article and Find Full Text PDF

spp. are ubiquitous in nature and are increasingly being recognized as emerging nosocomial pathogens. Nevertheless, to date, only 30 complete genome sequences of phages are available in GenBank, and nearly all of those phages were isolated on .

View Article and Find Full Text PDF

Typical laccases have four copper atoms, which form three different copper centers, of which the T1 copper is responsible for the blue color of the enzyme and gives it a characteristic absorbance around 610 nm. Several laccases have unusual spectral properties and are referred to as yellow or white laccases. Only two yellow laccases from the Ascomycota phylum have been described previously, and only one amino acid sequence of those enzymes is available.

View Article and Find Full Text PDF

Human activating signal cointegrator homology (ASCH) domain-containing proteins are widespread and diverse but, at present, the vast majority of those proteins have no function assigned to them. This study demonstrates that the 103-amino acid Escherichia coli protein YqfB, previously identified as hypothetical, is a unique ASCH domain-containing amidohydrolase responsible for the catabolism of N-acetylcytidine (ac4C). YqfB has several interesting and unique features: i) it is the smallest monomeric amidohydrolase described to date, ii) it is active towards structurally different N-acylated cytosines/cytidines, and iii) it has a high specificity for these substrates (k/K up to 2.

View Article and Find Full Text PDF

Here, we present a proof-of-principle for a new high-throughput functional screening of metagenomic libraries for the selection of enzymes with different activities, predetermined by the substrate being used. By this approach, a total of 21 enzyme-coding genes were selected, including members of xanthine dehydrogenase, aldehyde dehydrogenase (ALDH), and amidohydrolase families. The screening system is based on a pro-chromogenic substrate, which is transformed by the target enzyme to indole-3-carboxylic acid.

View Article and Find Full Text PDF

A high-throughput method (≥ 10 of clones can be analysed on a single agar plate) for the selection of ester-hydrolysing enzymes was developed based on the uridine auxotrophy of Escherichia coli strain DH10B ΔpyrFEC and the acylated derivatives 2',3',5'-O-tri-acetyluridine and 2',3',5'-O-tri-hexanoyluridine as the sole source of uridine. The proposed approach permits the selection of hydrolases belonging to different families and active towards different substrates. Moreover, the ester group of the substrate used for the selection, at least partly, determined the specificity of the selected enzymes.

View Article and Find Full Text PDF

Bioluminescence imaging experiments were carried out to characterize spatio-temporal patterns of bacterial self-organization in active suspensions (cultures) of bioluminescent and its mutants. An analysis of the effects of mutations shows that spatio-temporal patterns formed in standard microtitre plates are not related to the chemotaxis system of bacteria. In fact, these patterns are strongly dependent on the properties of mutants that characterize them as self-phoretic (non-flagellar) swimmers.

View Article and Find Full Text PDF

It has been recently shown that bioluminescence imaging can be usefully applied to provide new insights into bacterial self-organization. In this work we employ bioluminescence imaging to record images of nutrient rich liquid cultures of the lux-gene reporter Escherichia coli in microtiter plate wells. The images show that patterns of inhomogenous bioluminescence form along the three-phase contact lines.

View Article and Find Full Text PDF

A cryptic plasmid from Arthrobacter rhombi PRH1, designated as pPRH, was sequenced and characterized. It was 5000 bp in length with a G+C content of 66 mol%. The plasmid pPRH was predicted to encode six putative open reading frames (ORFs), in which ORF2 and ORF3 formed the minimal replicon of plasmid pPRH and shared 55-61% and 60-69% homology, respectively, with the RepA and RepB proteins of reported rhodococcal plasmids.

View Article and Find Full Text PDF

Glycine betaine (GB) could be used by Arthrobacter globiformis cells as a sole carbon source. The cells took up this molecule in the low as well as in the high salinity medium. Addition of GB to the mineral medium with high salt concentration revealed that GB was also used as an osmoprotectant.

View Article and Find Full Text PDF