Surface proteins are central to the cell's ability to react to its environment and to interact with neighboring cells. They are known to be inducers of almost all intracellular signaling. Moreover, they play an important role in environmental adaptation and drug treatment, and are often involved in disease pathogenesis and pathology (1).
View Article and Find Full Text PDFIn proteomics research chemical as well as physical methods are used to detect proteins subsequently to their separation. Physical methods are mostly applied after chromatography. They are either based on spectroscopy like light absorption at certain wavelengths or mass determination of peptides and their fragments with mass spectrometry.
View Article and Find Full Text PDFComparative proteomic methods are rapidly being applied to many different biological systems including complex tissues. One pitfall of these methods is that in some cases, such as oncology and neuroscience, tissue complexity requires isolation of specific cell types and sample is limited. Laser microdissection (LMD) is commonly used for obtaining such samples for proteomic studies.
View Article and Find Full Text PDFTwo-dimensional (2D) gel electrophoresis is a powerful technique enabling simultaneous visualization of relatively large portions of the proteome. However, the well documented issues of variation and lack of sensitivity and quantitative capabilities of existing labeling reagents, has limited the use of this technique as a quantitative tool. Two-dimensional difference gel electrophoresis (2D DIGE) builds on this technique by adding a highly accurate quantitative dimension.
View Article and Find Full Text PDFA proteomics approach was used to identify liver proteins that displayed altered levels in mice following treatment with a candidate drug. Samples from livers of mice treated with candidate drug or untreated were prepared, quantified, labeled with CyDye DIGE Fluors, and subjected to two-dimensional electrophoresis. Following scanning and imaging of gels from three different isoelectric focusing intervals (3-10, 7-11, 6.
View Article and Find Full Text PDFCancer Gene Ther
September 2003
E6AP was originally identified as the ubiquitin-protein ligase involved in human papillomavirus (HPV) E6-mediated p53 degradation and has since been shown to act as an E3 ubiquitin-protein ligase in the ubiquitination of several other protein substrates. To further define E6AP function at the molecular and cellular levels, a ribozyme-based gene inactivation approach was adopted. A library of hammerhead ribozymes, with randomized arm sequences, was used to screen active molecules along the entire E6AP transcript for ribozyme-cleavable sites.
View Article and Find Full Text PDF